Перейти к основному содержанию
Разложить на множители
Tick mark Image
Вычислить
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

3\left(3x^{2}-5x-2\right)
Вынесите 3 за скобки.
a+b=-5 ab=3\left(-2\right)=-6
Учтите 3x^{2}-5x-2. Разложите выражение на множители путем группировки. Сначала выражение необходимо переписать в следующем виде: 3x^{2}+ax+bx-2. Чтобы найти a и b, настройте систему на ее устранение.
1,-6 2,-3
Так как ab является отрицательным, a и b имеют противоположные знаки. Поскольку результат выражения a+b отрицательный, отрицательное число имеет большее абсолютное значение, чем положительное. Перечислите все такие пары целых -6.
1-6=-5 2-3=-1
Вычислите сумму для каждой пары.
a=-6 b=1
Решение — это пара значений, сумма которых равна -5.
\left(3x^{2}-6x\right)+\left(x-2\right)
Перепишите 3x^{2}-5x-2 как \left(3x^{2}-6x\right)+\left(x-2\right).
3x\left(x-2\right)+x-2
Вынесите за скобки 3x в 3x^{2}-6x.
\left(x-2\right)\left(3x+1\right)
Вынесите за скобки общий член x-2, используя свойство дистрибутивности.
3\left(x-2\right)\left(3x+1\right)
Перепишите полное разложенное на множители выражение.
9x^{2}-15x-6=0
Квадратный многочлен можно разложить с помощью преобразования ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), где x_{1} и x_{2} являются решениями квадратного уравнения ax^{2}+bx+c=0.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 9\left(-6\right)}}{2\times 9}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Эта формула дает два решения: одно, когда для ± используется сложение, а второе — когда вычитание.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 9\left(-6\right)}}{2\times 9}
Возведите -15 в квадрат.
x=\frac{-\left(-15\right)±\sqrt{225-36\left(-6\right)}}{2\times 9}
Умножьте -4 на 9.
x=\frac{-\left(-15\right)±\sqrt{225+216}}{2\times 9}
Умножьте -36 на -6.
x=\frac{-\left(-15\right)±\sqrt{441}}{2\times 9}
Прибавьте 225 к 216.
x=\frac{-\left(-15\right)±21}{2\times 9}
Извлеките квадратный корень из 441.
x=\frac{15±21}{2\times 9}
Число, противоположное -15, равно 15.
x=\frac{15±21}{18}
Умножьте 2 на 9.
x=\frac{36}{18}
Решите уравнение x=\frac{15±21}{18} при условии, что ± — плюс. Прибавьте 15 к 21.
x=2
Разделите 36 на 18.
x=-\frac{6}{18}
Решите уравнение x=\frac{15±21}{18} при условии, что ± — минус. Вычтите 21 из 15.
x=-\frac{1}{3}
Привести дробь \frac{-6}{18} к несократимому виду, разделив числитель и знаменатель на 6.
9x^{2}-15x-6=9\left(x-2\right)\left(x-\left(-\frac{1}{3}\right)\right)
Разложите исходное выражение на множители с помощью ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Подставьте 2 вместо x_{1} и -\frac{1}{3} вместо x_{2}.
9x^{2}-15x-6=9\left(x-2\right)\left(x+\frac{1}{3}\right)
Упростите все выражения типа p-\left(-q\right) до выражений типа p+q.
9x^{2}-15x-6=9\left(x-2\right)\times \frac{3x+1}{3}
Прибавьте \frac{1}{3} к x, найдя общий знаменатель и сложив числители. Затем, если это возможно, сократите дробь до младших членов.
9x^{2}-15x-6=3\left(x-2\right)\left(3x+1\right)
Сократите наибольший общий делитель 3 в 9 и 3.