Перейти к основному содержанию
Найдите x
Tick mark Image
Найдите x (комплексное решение)
Tick mark Image
График

Подобные задачи из результатов поиска в Интернете

Поделиться

6x^{4}-5xx^{2}-5x-6=0
Упорядочите уравнение и приведите его к стандартному виду. Разместите члены, начиная с члена с наибольшей степенью, и заканчивая членом с наименьшей степенью.
±1,±2,±3,±6,±\frac{1}{2},±\frac{3}{2},±\frac{1}{3},±\frac{2}{3},±\frac{1}{6}
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член -6, а q делит старший коэффициент 6. Перечислите всех кандидатов \frac{p}{q}.
x=-\frac{2}{3}
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
2x^{3}-3x^{2}+2x-3=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите -5xx^{2}-5x+6x^{4}-6 на 3\left(x+\frac{2}{3}\right)=3x+2, чтобы получить 2x^{3}-3x^{2}+2x-3. Устраните уравнение, в котором результат равняется 0.
±\frac{3}{2},±3,±\frac{1}{2},±1
Согласно теореме о рациональных корнях, все рациональные корни многочлена имеют форму \frac{p}{q}, где p делит свободный член -3, а q делит старший коэффициент 2. Перечислите всех кандидатов \frac{p}{q}.
x=\frac{3}{2}
Найдите один такой корень, перепробовав все целочисленные значения, начиная с наименьшего по модулю. Если целочисленных корней не найдено, попробуйте дробные значения.
x^{2}+1=0
По факторам Ньютона, x-k является фактором многочлена сумме для каждого корневого k. Разделите 2x^{3}-3x^{2}+2x-3 на 2\left(x-\frac{3}{2}\right)=2x-3, чтобы получить x^{2}+1. Устраните уравнение, в котором результат равняется 0.
x=\frac{0±\sqrt{0^{2}-4\times 1\times 1}}{2}
Все уравнения вида ax^{2}+bx+c=0 можно решить с помощью формулы корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Замените в формуле корней квадратного уравнения a на 1, b на 0 и c на 1.
x=\frac{0±\sqrt{-4}}{2}
Выполните арифметические операции.
x\in \emptyset
Решения нет, так как квадратный корень из отрицательного числа не существует в области вещественных чисел.
x=-\frac{2}{3} x=\frac{3}{2}
Перечислите все найденные решения.