Найдите x
x=-\frac{2}{3}\approx -0,666666667
x=1
График
Поделиться
Скопировано в буфер обмена
3x^{2}-3x=2-2x
Чтобы умножить 3x на x-1, используйте свойство дистрибутивности.
3x^{2}-3x-2=-2x
Вычтите 2 из обеих частей уравнения.
3x^{2}-3x-2+2x=0
Прибавьте 2x к обеим частям.
3x^{2}-x-2=0
Объедините -3x и 2x, чтобы получить -x.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 3\left(-2\right)}}{2\times 3}
Данное уравнение имеет стандартный вид ax^{2}+bx+c=0. Подставьте 3 вместо a, -1 вместо b и -2 вместо c в формуле корней квадратного уравнения \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-12\left(-2\right)}}{2\times 3}
Умножьте -4 на 3.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2\times 3}
Умножьте -12 на -2.
x=\frac{-\left(-1\right)±\sqrt{25}}{2\times 3}
Прибавьте 1 к 24.
x=\frac{-\left(-1\right)±5}{2\times 3}
Извлеките квадратный корень из 25.
x=\frac{1±5}{2\times 3}
Число, противоположное -1, равно 1.
x=\frac{1±5}{6}
Умножьте 2 на 3.
x=\frac{6}{6}
Решите уравнение x=\frac{1±5}{6} при условии, что ± — плюс. Прибавьте 1 к 5.
x=1
Разделите 6 на 6.
x=-\frac{4}{6}
Решите уравнение x=\frac{1±5}{6} при условии, что ± — минус. Вычтите 5 из 1.
x=-\frac{2}{3}
Привести дробь \frac{-4}{6} к несократимому виду, разделив числитель и знаменатель на 2.
x=1 x=-\frac{2}{3}
Уравнение решено.
3x^{2}-3x=2-2x
Чтобы умножить 3x на x-1, используйте свойство дистрибутивности.
3x^{2}-3x+2x=2
Прибавьте 2x к обеим частям.
3x^{2}-x=2
Объедините -3x и 2x, чтобы получить -x.
\frac{3x^{2}-x}{3}=\frac{2}{3}
Разделите обе части на 3.
x^{2}-\frac{1}{3}x=\frac{2}{3}
Деление на 3 аннулирует операцию умножения на 3.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Деление -\frac{1}{3}, коэффициент x термина, 2 для получения -\frac{1}{6}. Затем добавьте квадрат -\frac{1}{6} к обеим частям уравнения. Этот шаг поворачивается в левой части уравнения до идеального квадрата.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Возведите -\frac{1}{6} в квадрат путем возведения числителя и знаменателя дроби в квадрат.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Прибавьте \frac{2}{3} к \frac{1}{36}, найдя общий знаменатель и сложив числители. Затем, если это возможно, сократите дробь до младших членов.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
Коэффициент x^{2}-\frac{1}{3}x+\frac{1}{36}. Как правило, если x^{2}+bx+c является идеальным квадратом, его всегда можно разложить как \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Извлеките квадратный корень из обеих частей уравнения.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Упростите.
x=1 x=-\frac{2}{3}
Прибавьте \frac{1}{6} к обеим частям уравнения.
Примеры
Квадратное уравнение
{ x } ^ { 2 } - 4 x - 5 = 0
Тригонометрия
4 \sin \theta \cos \theta = 2 \sin \theta
Линейное уравнение
y = 3x + 4
Арифметика
699 * 533
Матрица
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Система уравнений
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Дифференцирование
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Интегрирование
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Пределы
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}