Перейти к основному содержанию
Вычислить
Tick mark Image
Дифференцировать по x
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

\int x^{4}\mathrm{d}x+\int 2x^{3}\mathrm{d}x+\int -9x^{2}\mathrm{d}x+\int x\mathrm{d}x
Интегрируйте сумму по членам.
\int x^{4}\mathrm{d}x+2\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Вычтите постоянную в каждом из членов.
\frac{x^{5}}{5}+2\int x^{3}\mathrm{d}x-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{4}\mathrm{d}x \frac{x^{5}}{5}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-9\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{3}\mathrm{d}x \frac{x^{4}}{4}. Умножьте 2 на \frac{x^{4}}{4}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\int x\mathrm{d}x
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x^{2}\mathrm{d}x \frac{x^{3}}{3}. Умножьте -9 на \frac{x^{3}}{3}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\frac{x^{2}}{2}
Так как \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} k\neq -1, замените \int x\mathrm{d}x \frac{x^{2}}{2}.
\frac{x^{5}}{5}+\frac{x^{4}}{2}-3x^{3}+\frac{x^{2}}{2}+С
Если F\left(x\right) является антипроизводной f\left(x\right), то набор всех его производных f\left(x\right) предоставлен F\left(x\right)+C. Следовательно, добавьте константу C\in \mathrm{R} интеграции к результату.