Перейти к основному содержанию
Вычислить
Tick mark Image
Разложите
Tick mark Image

Подобные задачи из результатов поиска в Интернете

Поделиться

\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Учтите \left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Возведите \frac{1}{3} в квадрат.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Разложите \left(\frac{1}{2}a\right)^{2}.
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Вычислите \frac{1}{2} в степени 2 и получите \frac{1}{4}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Возведите \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9} в квадрат.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы найти противоположное значение выражения 2a^{2}-\frac{3}{8}a, необходимо найти противоположное значение для каждого члена.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1}{4}a^{2} и -2a^{2}, чтобы получить -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы умножить \frac{7}{2}a^{2} на -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a, используйте свойство дистрибутивности.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы найти противоположное значение выражения 2a^{2}-\frac{3}{8}a, необходимо найти противоположное значение для каждого члена.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1}{4}a^{2} и -2a^{2}, чтобы получить -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Возведите -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a в квадрат.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{49}{8}a^{4} и \frac{49}{16}a^{4}, чтобы получить -\frac{49}{16}a^{4}.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{21}{16}a^{3} и -\frac{21}{16}a^{3}, чтобы получить 0.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{7}{18}a^{2} и \frac{305}{576}a^{2}, чтобы получить \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{49}{16}a^{4} и \frac{49}{16}a^{4}, чтобы получить 0.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы найти противоположное значение выражения 2a^{2}-\frac{3}{8}a, необходимо найти противоположное значение для каждого члена.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1}{4}a^{2} и -2a^{2}, чтобы получить -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы умножить -\frac{16}{9} на -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a, используйте свойство дистрибутивности.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{9}{64}a^{2} и \frac{28}{9}a^{2}, чтобы получить \frac{1873}{576}a^{2}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы вычислить \frac{17}{81}, сложите \frac{1}{81} и \frac{16}{81}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{1}{12}a и -\frac{2}{3}a, чтобы получить -\frac{3}{4}a.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1873}{576}a^{2} и -\frac{28}{9}a^{2}, чтобы получить \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Чтобы вычислить 1, сложите \frac{17}{81} и \frac{64}{81}.
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Объедините \frac{7}{64}a^{2} и \frac{9}{64}a^{2}, чтобы получить \frac{1}{4}a^{2}.
\frac{1}{4}a^{2}-a+1
Объедините -\frac{3}{4}a и -\frac{1}{4}a, чтобы получить -a.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}a\right)^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Учтите \left(\frac{1}{2}a+\frac{1}{3}\right)\left(\frac{1}{2}a-\frac{1}{3}\right). Умножение можно преобразовать в разность квадратов с помощью следующего правила: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Возведите \frac{1}{3} в квадрат.
\frac{7}{64}a^{2}+\left(\left(\frac{1}{2}\right)^{2}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Разложите \left(\frac{1}{2}a\right)^{2}.
\frac{7}{64}a^{2}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9}\right)^{2}-\frac{1}{4}a
Вычислите \frac{1}{2} в степени 2 и получите \frac{1}{4}.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Возведите \frac{1}{4}a^{2}-\frac{1}{9}-\frac{1}{2}a\left(4a-\frac{3}{4}\right)+\frac{7}{4}a^{2}-\frac{8}{9} в квадрат.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы найти противоположное значение выражения 2a^{2}-\frac{3}{8}a, необходимо найти противоположное значение для каждого члена.
\frac{7}{64}a^{2}+\frac{7}{2}a^{2}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1}{4}a^{2} и -2a^{2}, чтобы получить -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы умножить \frac{7}{2}a^{2} на -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a, используйте свойство дистрибутивности.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы найти противоположное значение выражения 2a^{2}-\frac{3}{8}a, необходимо найти противоположное значение для каждого члена.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)^{2}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1}{4}a^{2} и -2a^{2}, чтобы получить -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}-\frac{49}{8}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}+\frac{49}{16}a^{4}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Возведите -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a в квадрат.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{21}{16}a^{3}-\frac{21}{16}a^{3}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{49}{8}a^{4} и \frac{49}{16}a^{4}, чтобы получить -\frac{49}{16}a^{4}.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}-\frac{7}{18}a^{2}+\frac{305}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{21}{16}a^{3} и -\frac{21}{16}a^{3}, чтобы получить 0.
\frac{7}{64}a^{2}-\frac{49}{16}a^{4}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{49}{16}a^{4}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{7}{18}a^{2} и \frac{305}{576}a^{2}, чтобы получить \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-\left(2a^{2}-\frac{3}{8}a\right)\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{49}{16}a^{4} и \frac{49}{16}a^{4}, чтобы получить 0.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(\frac{1}{4}a^{2}-\frac{1}{9}-2a^{2}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы найти противоположное значение выражения 2a^{2}-\frac{3}{8}a, необходимо найти противоположное значение для каждого члена.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}-\frac{16}{9}\left(-\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a\right)-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1}{4}a^{2} и -2a^{2}, чтобы получить -\frac{7}{4}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{28}{9}a^{2}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы умножить -\frac{16}{9} на -\frac{7}{4}a^{2}-\frac{1}{9}+\frac{3}{8}a, используйте свойство дистрибутивности.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{1}{81}+\frac{16}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{9}{64}a^{2} и \frac{28}{9}a^{2}, чтобы получить \frac{1873}{576}a^{2}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{1}{12}a+\frac{17}{81}-\frac{2}{3}a-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Чтобы вычислить \frac{17}{81}, сложите \frac{1}{81} и \frac{16}{81}.
\frac{7}{64}a^{2}+\frac{1873}{576}a^{2}-\frac{3}{4}a+\frac{17}{81}-\frac{28}{9}a^{2}+\frac{64}{81}-\frac{1}{4}a
Объедините -\frac{1}{12}a и -\frac{2}{3}a, чтобы получить -\frac{3}{4}a.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+\frac{17}{81}+\frac{64}{81}-\frac{1}{4}a
Объедините \frac{1873}{576}a^{2} и -\frac{28}{9}a^{2}, чтобы получить \frac{9}{64}a^{2}.
\frac{7}{64}a^{2}+\frac{9}{64}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Чтобы вычислить 1, сложите \frac{17}{81} и \frac{64}{81}.
\frac{1}{4}a^{2}-\frac{3}{4}a+1-\frac{1}{4}a
Объедините \frac{7}{64}a^{2} и \frac{9}{64}a^{2}, чтобы получить \frac{1}{4}a^{2}.
\frac{1}{4}a^{2}-a+1
Объедините -\frac{3}{4}a и -\frac{1}{4}a, чтобы получить -a.