Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image

Probleme similare din căutarea web

Partajați

\left(t+3\right)\left(t^{2}-3t+2\right)
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 6 și q împarte coeficientul inițial 1. O astfel de rădăcină este -3. Descompuneți în factori polinomul împărțindu-l la t+3.
a+b=-3 ab=1\times 2=2
Să luăm t^{2}-3t+2. Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca t^{2}+at+bt+2. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=-2 b=-1
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este negativ, a și b sunt negative. Singura astfel de pereche este soluția de sistem.
\left(t^{2}-2t\right)+\left(-t+2\right)
Rescrieți t^{2}-3t+2 ca \left(t^{2}-2t\right)+\left(-t+2\right).
t\left(t-2\right)-\left(t-2\right)
Factor t în primul și -1 în al doilea grup.
\left(t-2\right)\left(t-1\right)
Scoateți termenul comun t-2 prin utilizarea proprietății de distributivitate.
\left(t-2\right)\left(t-1\right)\left(t+3\right)
Rescrieți expresia completă descompusă în factori.