Rezolvați pentru x
x = -\frac{60}{11} = -5\frac{5}{11} \approx -5,454545455
Grafic
Partajați
Copiat în clipboard
6x+60+2=-5\left(x-1\right)-3
Utilizați proprietatea de distributivitate pentru a înmulți 6 cu x+10.
6x+62=-5\left(x-1\right)-3
Adunați 60 și 2 pentru a obține 62.
6x+62=-5x+5-3
Utilizați proprietatea de distributivitate pentru a înmulți -5 cu x-1.
6x+62=-5x+2
Scădeți 3 din 5 pentru a obține 2.
6x+62+5x=2
Adăugați 5x la ambele părți.
11x+62=2
Combinați 6x cu 5x pentru a obține 11x.
11x=2-62
Scădeți 62 din ambele părți.
11x=-60
Scădeți 62 din 2 pentru a obține -60.
x=\frac{-60}{11}
Se împart ambele părți la 11.
x=-\frac{60}{11}
Fracția \frac{-60}{11} poate fi rescrisă ca -\frac{60}{11} prin extragerea semnului negativ.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}