Direct la conținutul principal
Descompunere în factori
Tick mark Image
Evaluați
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

a+b=-5 ab=3\left(-28\right)=-84
Descompuneți expresia în factori prin grupare. Mai întâi, expresia trebuie să fie rescrisă ca 3x^{2}+ax+bx-28. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
1,-84 2,-42 3,-28 4,-21 6,-14 7,-12
Deoarece ab este negativ, a și b au semne opuse. Deoarece a+b este negativ, numărul negativ are o valoare absolută mai mare decât valoarea pozitivă. Listează toate perechi de valori întregi care oferă produse -84.
1-84=-83 2-42=-40 3-28=-25 4-21=-17 6-14=-8 7-12=-5
Calculați suma pentru fiecare pereche.
a=-12 b=7
Soluția este perechea care dă suma de -5.
\left(3x^{2}-12x\right)+\left(7x-28\right)
Rescrieți 3x^{2}-5x-28 ca \left(3x^{2}-12x\right)+\left(7x-28\right).
3x\left(x-4\right)+7\left(x-4\right)
Factor 3x în primul și 7 în al doilea grup.
\left(x-4\right)\left(3x+7\right)
Scoateți termenul comun x-4 prin utilizarea proprietății de distributivitate.
3x^{2}-5x-28=0
Polinomul de gradul doi se poate descompune în factori folosind transformarea ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), unde x_{1} și x_{2} sunt soluțiile ecuației de gradul doi ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-28\right)}}{2\times 3}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate utilizând formula rădăcinilor ecuației de gradul al doilea: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formula rădăcinilor ecuației de gradul al doilea oferă două soluții, una atunci când operația ± este de adunare și una atunci când este de scădere.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-28\right)}}{2\times 3}
Ridicați -5 la pătrat.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-28\right)}}{2\times 3}
Înmulțiți -4 cu 3.
x=\frac{-\left(-5\right)±\sqrt{25+336}}{2\times 3}
Înmulțiți -12 cu -28.
x=\frac{-\left(-5\right)±\sqrt{361}}{2\times 3}
Adunați 25 cu 336.
x=\frac{-\left(-5\right)±19}{2\times 3}
Aflați rădăcina pătrată pentru 361.
x=\frac{5±19}{2\times 3}
Opusul lui -5 este 5.
x=\frac{5±19}{6}
Înmulțiți 2 cu 3.
x=\frac{24}{6}
Acum rezolvați ecuația x=\frac{5±19}{6} atunci când ± este plus. Adunați 5 cu 19.
x=4
Împărțiți 24 la 6.
x=-\frac{14}{6}
Acum rezolvați ecuația x=\frac{5±19}{6} atunci când ± este minus. Scădeți 19 din 5.
x=-\frac{7}{3}
Reduceți fracția \frac{-14}{6} la cei mai mici termeni, prin extragerea și reducerea 2.
3x^{2}-5x-28=3\left(x-4\right)\left(x-\left(-\frac{7}{3}\right)\right)
Descompuneți în factori expresia inițială utilizând ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Înlocuiți x_{1} cu 4 și x_{2} cu -\frac{7}{3}.
3x^{2}-5x-28=3\left(x-4\right)\left(x+\frac{7}{3}\right)
Simplificați toate expresiile formei p-\left(-q\right) la p+q.
3x^{2}-5x-28=3\left(x-4\right)\times \frac{3x+7}{3}
Adunați \frac{7}{3} cu x găsind un numitor comun și adunând numărătorii. Apoi simplificați fracția până devine ireductibilă, dacă este posibil.
3x^{2}-5x-28=\left(x-4\right)\left(3x+7\right)
Simplificați cu 3, cel mai mare factor comun din 3 și 3.