Descompunere în factori
\left(10z+1\right)\left(100z^{2}-10z+1\right)
Evaluați
1000z^{3}+1
Partajați
Copiat în clipboard
\left(10z+1\right)\left(100z^{2}-10z+1\right)
Rescrieți 1000z^{3}+1 ca \left(10z\right)^{3}+1^{3}. Suma de cuburi poate fi factorizate utilizând regula: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right). Polinomul 100z^{2}-10z+1 nu este descompus în factori, pentru că nu are rădăcini raționale.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}