Rezolvați pentru x (complex solution)
x=\frac{2}{5}+\frac{1}{5}i=0,4+0,2i
x=\frac{2}{5}-\frac{1}{5}i=0,4-0,2i
x=-\frac{1}{2}=-0,5
Rezolvați pentru x
x=-\frac{1}{2}=-0,5
Grafic
Partajați
Copiat în clipboard
±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 1 și q împarte coeficientul inițial 10. Enumerați toți candidații \frac{p}{q}.
x=-\frac{1}{2}
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
5x^{2}-4x+1=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți 10x^{3}-3x^{2}-2x+1 la 2\left(x+\frac{1}{2}\right)=2x+1 pentru a obține 5x^{2}-4x+1. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\times 1}}{2\times 5}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 5, b cu -4 și c cu 1.
x=\frac{4±\sqrt{-4}}{10}
Faceți calculele.
x=\frac{2}{5}-\frac{1}{5}i x=\frac{2}{5}+\frac{1}{5}i
Rezolvați ecuația 5x^{2}-4x+1=0 când ± este plus și când ± este minus.
x=-\frac{1}{2} x=\frac{2}{5}-\frac{1}{5}i x=\frac{2}{5}+\frac{1}{5}i
Listați toate soluțiile găsite.
±\frac{1}{10},±\frac{1}{5},±\frac{1}{2},±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 1 și q împarte coeficientul inițial 10. Enumerați toți candidații \frac{p}{q}.
x=-\frac{1}{2}
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
5x^{2}-4x+1=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți 10x^{3}-3x^{2}-2x+1 la 2\left(x+\frac{1}{2}\right)=2x+1 pentru a obține 5x^{2}-4x+1. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\times 1}}{2\times 5}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 5, b cu -4 și c cu 1.
x=\frac{4±\sqrt{-4}}{10}
Faceți calculele.
x\in \emptyset
Pentru că rădăcina pătrată a unui număr negativ nu este definită în câmpul real, nu există soluții.
x=-\frac{1}{2}
Listați toate soluțiile găsite.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}