Calculați derivata în funcție de b
-7b^{6}
Evaluați
-b^{7}
Partajați
Copiat în clipboard
-b^{1}\frac{\mathrm{d}}{\mathrm{d}b}(b^{6})+b^{6}\frac{\mathrm{d}}{\mathrm{d}b}(-b^{1})
Pentru orice două funcții diferențiabile, derivata produsului celor două funcții este prima funcție înmulțită cu derivata celei de-a doua, plus a doua funcție înmulțită cu derivata primei.
-b^{1}\times 6b^{6-1}+b^{6}\left(-1\right)b^{1-1}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
-b^{1}\times 6b^{5}+b^{6}\left(-1\right)b^{0}
Simplificați.
6\left(-1\right)b^{1+5}-b^{6}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
-6b^{6}-b^{6}
Simplificați.
-b^{7}
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 1 și 6 pentru a obține 7.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}