Direct la conținutul principal
Rezolvați pentru x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

x^{3}-4x^{2}+x=-6
Interschimbați părțile, astfel încât toți termenii variabili să fie pe partea stângă.
x^{3}-4x^{2}+x+6=0
Adăugați 6 la ambele părți.
±6,±3,±2,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 6 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=-1
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}-5x+6=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}-4x^{2}+x+6 la x+1 pentru a obține x^{2}-5x+6. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 1\times 6}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu -5 și c cu 6.
x=\frac{5±1}{2}
Faceți calculele.
x=2 x=3
Rezolvați ecuația x^{2}-5x+6=0 când ± este plus și când ± este minus.
x=-1 x=2 x=3
Listați toate soluțiile găsite.