Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 12x^{2} cu \frac{x-2}{x-2}.
\frac{12x^{2}\left(x-2\right)-1}{x-2}
Deoarece \frac{12x^{2}\left(x-2\right)}{x-2} și \frac{1}{x-2} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{12x^{3}-24x^{2}-1}{x-2}
Faceți înmulțiri în 12x^{2}\left(x-2\right)-1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)}{x-2}-\frac{1}{x-2})
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Înmulțiți 12x^{2} cu \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{2}\left(x-2\right)-1}{x-2})
Deoarece \frac{12x^{2}\left(x-2\right)}{x-2} și \frac{1}{x-2} au același numitor comun, scădeți-le scăzând numărătorii lor.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12x^{3}-24x^{2}-1}{x-2})
Faceți înmulțiri în 12x^{2}\left(x-2\right)-1.
\frac{\left(x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(12x^{3}-24x^{2}-1)-\left(12x^{3}-24x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-2)}{\left(x^{1}-2\right)^{2}}
Pentru orice două funcții diferențiabile, derivata câtului celor două funcții este numitorul înmulțit cu derivata numărătorului, minus numărătorul înmulțit cu derivata numitorului, totul împărțit la numitorul la pătrat.
\frac{\left(x^{1}-2\right)\left(3\times 12x^{3-1}+2\left(-24\right)x^{2-1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{1-1}}{\left(x^{1}-2\right)^{2}}
Derivata unui polinom este suma derivatelor termenilor săi. Derivata unui termen constant este 0. Derivata lui ax^{n} este nax^{n-1}.
\frac{\left(x^{1}-2\right)\left(36x^{2}-48x^{1}\right)-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Simplificați.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-1\right)x^{0}}{\left(x^{1}-2\right)^{2}}
Înmulțiți x^{1}-2 cu 36x^{2}-48x^{1}.
\frac{x^{1}\times 36x^{2}+x^{1}\left(-48\right)x^{1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}x^{0}-24x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Înmulțiți 12x^{3}-24x^{2}-1 cu x^{0}.
\frac{36x^{1+2}-48x^{1+1}-2\times 36x^{2}-2\left(-48\right)x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Pentru a înmulți puterile cu aceleași baze, adunați exponenții lor.
\frac{36x^{3}-48x^{2}-72x^{2}+96x^{1}-\left(12x^{3}-24x^{2}-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Simplificați.
\frac{24x^{3}-24x^{2}-72x^{2}+96x^{1}-\left(-x^{0}\right)}{\left(x^{1}-2\right)^{2}}
Combinați termenii asemenea.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-x^{0}\right)}{\left(x-2\right)^{2}}
Pentru orice termen t, t^{1}=t.
\frac{24x^{3}-24x^{2}-72x^{2}+96x-\left(-1\right)}{\left(x-2\right)^{2}}
Pentru orice termen t cu excepția lui 0, t^{0}=1.