Rezolvați pentru x
x=3
x=1
Grafic
Partajați
Copiat în clipboard
x^{2}-4x+4-1=0
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+3=0
Scădeți 1 din 4 pentru a obține 3.
a+b=-4 ab=3
Pentru a rezolva ecuația, factorul x^{2}-4x+3 utilizând formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=-3 b=-1
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este negativ, a și b sunt negative. Singura astfel de pereche este soluția de sistem.
\left(x-3\right)\left(x-1\right)
Rescrieți expresia descompusă în factori \left(x+a\right)\left(x+b\right) utilizând valorile obținute.
x=3 x=1
Pentru a găsi soluții de ecuații, rezolvați x-3=0 și x-1=0.
x^{2}-4x+4-1=0
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+3=0
Scădeți 1 din 4 pentru a obține 3.
a+b=-4 ab=1\times 3=3
Pentru a rezolva ecuația, factor mâna stângă după grupare. Mai întâi, fața la stânga trebuie să fie rescrisă ca x^{2}+ax+bx+3. Pentru a găsi a și b, configurați un sistem pentru a fi rezolvat.
a=-3 b=-1
Deoarece ab este pozitiv, a și b au același semn. Deoarece a+b este negativ, a și b sunt negative. Singura astfel de pereche este soluția de sistem.
\left(x^{2}-3x\right)+\left(-x+3\right)
Rescrieți x^{2}-4x+3 ca \left(x^{2}-3x\right)+\left(-x+3\right).
x\left(x-3\right)-\left(x-3\right)
Factor x în primul și -1 în al doilea grup.
\left(x-3\right)\left(x-1\right)
Scoateți termenul comun x-3 prin utilizarea proprietății de distributivitate.
x=3 x=1
Pentru a găsi soluții de ecuații, rezolvați x-3=0 și x-1=0.
x^{2}-4x+4-1=0
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+3=0
Scădeți 1 din 4 pentru a obține 3.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 3}}{2}
Această ecuație este în formă standard: ax^{2}+bx+c=0. Înlocuiți a cu 1, b cu -4 și c cu 3 în formula rădăcinilor ecuațiilor de gradul al doilea, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 3}}{2}
Ridicați -4 la pătrat.
x=\frac{-\left(-4\right)±\sqrt{16-12}}{2}
Înmulțiți -4 cu 3.
x=\frac{-\left(-4\right)±\sqrt{4}}{2}
Adunați 16 cu -12.
x=\frac{-\left(-4\right)±2}{2}
Aflați rădăcina pătrată pentru 4.
x=\frac{4±2}{2}
Opusul lui -4 este 4.
x=\frac{6}{2}
Acum rezolvați ecuația x=\frac{4±2}{2} atunci când ± este plus. Adunați 4 cu 2.
x=3
Împărțiți 6 la 2.
x=\frac{2}{2}
Acum rezolvați ecuația x=\frac{4±2}{2} atunci când ± este minus. Scădeți 2 din 4.
x=1
Împărțiți 2 la 2.
x=3 x=1
Ecuația este rezolvată acum.
x^{2}-4x+4-1=0
Utilizați binomul lui Newton \left(a-b\right)^{2}=a^{2}-2ab+b^{2} pentru a extinde \left(x-2\right)^{2}.
x^{2}-4x+3=0
Scădeți 1 din 4 pentru a obține 3.
x^{2}-4x=-3
Scădeți 3 din ambele părți. Orice se scade din zero dă negativul său.
x^{2}-4x+\left(-2\right)^{2}=-3+\left(-2\right)^{2}
Împărțiți -4, coeficientul termenului x, la 2 pentru a obține -2. Apoi, adunați pătratul lui -2 la ambele părți ale ecuației. Acest pas face din partea stângă a ecuației un pătrat perfect.
x^{2}-4x+4=-3+4
Ridicați -2 la pătrat.
x^{2}-4x+4=1
Adunați -3 cu 4.
\left(x-2\right)^{2}=1
Factor x^{2}-4x+4. În general, atunci când x^{2}+bx+c este un pătrat perfect, el poate fi descompus în factori oricând ca \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{1}
Aflați rădăcina pătrată pentru ambele părți ale ecuației.
x-2=1 x-2=-1
Simplificați.
x=3 x=1
Adunați 2 la ambele părți ale ecuației.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}