Direct la conținutul principal
Evaluați
Tick mark Image
Extindere
Tick mark Image

Partajați

\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{2}{3}x^{2}y^{2} cu -\frac{3}{2}x^{2}y^{2} pentru a obține -\frac{5}{6}x^{2}y^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Extindeți \left(-\frac{5}{6}x^{2}y^{2}\right)^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculați -\frac{5}{6} la puterea 2 și obțineți \frac{25}{36}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{1}{4}xy cu -\frac{7}{8}xy pentru a obține -\frac{5}{8}xy.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Extindeți \left(-\frac{5}{8}xy\right)^{2}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculați -\frac{5}{8} la puterea 2 și obțineți \frac{25}{64}.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Reduceți prin eliminare x^{2}y^{2} atât în numărător, cât și în numitor.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Împărțiți \frac{25}{36}x^{2}y^{2} la \frac{25}{64} înmulțind pe \frac{25}{36}x^{2}y^{2} cu reciproca lui \frac{25}{64}.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Înmulțiți \frac{25}{36} cu 64 pentru a obține \frac{400}{9}.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Împărțiți \frac{400}{9}x^{2}y^{2} la 25 pentru a obține \frac{16}{9}x^{2}y^{2}.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{5}{3}x^{2}y^{2} cu -\frac{1}{6}x^{2}y^{2} pentru a obține \frac{3}{2}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{16}{9}x^{2}y^{2} cu -\frac{3}{2}x^{2}y^{2} pentru a obține \frac{5}{18}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
Combinați \frac{4}{3}xy cu -\frac{2}{5}xy pentru a obține \frac{14}{15}xy.
\frac{7}{27}x^{2}y^{2}xy
Înmulțiți \frac{5}{18} cu \frac{14}{15} pentru a obține \frac{7}{27}.
\frac{7}{27}x^{3}y^{2}y
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 2 și 1 pentru a obține 3.
\frac{7}{27}x^{3}y^{3}
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 2 și 1 pentru a obține 3.
\left(\frac{\left(-\frac{5}{6}x^{2}y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{2}{3}x^{2}y^{2} cu -\frac{3}{2}x^{2}y^{2} pentru a obține -\frac{5}{6}x^{2}y^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}\left(x^{2}\right)^{2}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Extindeți \left(-\frac{5}{6}x^{2}y^{2}\right)^{2}.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}\left(y^{2}\right)^{2}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\left(\frac{\left(-\frac{5}{6}\right)^{2}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 2 cu 2 pentru a obține 4.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(\frac{1}{4}xy-\frac{7}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculați -\frac{5}{6} la puterea 2 și obțineți \frac{25}{36}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}xy\right)^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{1}{4}xy cu -\frac{7}{8}xy pentru a obține -\frac{5}{8}xy.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\left(-\frac{5}{8}\right)^{2}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Extindeți \left(-\frac{5}{8}xy\right)^{2}.
\left(\frac{\frac{25}{36}x^{4}y^{4}}{\frac{25}{64}x^{2}y^{2}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Calculați -\frac{5}{8} la puterea 2 și obțineți \frac{25}{64}.
\left(\frac{\frac{25}{36}x^{2}y^{2}}{\frac{25}{64}}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Reduceți prin eliminare x^{2}y^{2} atât în numărător, cât și în numitor.
\left(\frac{\frac{25}{36}x^{2}y^{2}\times 64}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Împărțiți \frac{25}{36}x^{2}y^{2} la \frac{25}{64} înmulțind pe \frac{25}{36}x^{2}y^{2} cu reciproca lui \frac{25}{64}.
\left(\frac{\frac{400}{9}x^{2}y^{2}}{25}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Înmulțiți \frac{25}{36} cu 64 pentru a obține \frac{400}{9}.
\left(\frac{16}{9}x^{2}y^{2}-\left(\frac{5}{3}x^{2}y^{2}-\frac{1}{6}x^{2}y^{2}\right)\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Împărțiți \frac{400}{9}x^{2}y^{2} la 25 pentru a obține \frac{16}{9}x^{2}y^{2}.
\left(\frac{16}{9}x^{2}y^{2}-\frac{3}{2}x^{2}y^{2}\right)\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{5}{3}x^{2}y^{2} cu -\frac{1}{6}x^{2}y^{2} pentru a obține \frac{3}{2}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\left(\frac{4}{3}xy-\frac{2}{5}xy\right)
Combinați \frac{16}{9}x^{2}y^{2} cu -\frac{3}{2}x^{2}y^{2} pentru a obține \frac{5}{18}x^{2}y^{2}.
\frac{5}{18}x^{2}y^{2}\times \frac{14}{15}xy
Combinați \frac{4}{3}xy cu -\frac{2}{5}xy pentru a obține \frac{14}{15}xy.
\frac{7}{27}x^{2}y^{2}xy
Înmulțiți \frac{5}{18} cu \frac{14}{15} pentru a obține \frac{7}{27}.
\frac{7}{27}x^{3}y^{2}y
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 2 și 1 pentru a obține 3.
\frac{7}{27}x^{3}y^{3}
Pentru a înmulți puterile cu aceeași baze, adunați exponenții lor. Adunați 2 și 1 pentru a obține 3.