Direct la conținutul principal
Rezolvați pentru x (complex solution)
Tick mark Image
Rezolvați pentru x
Tick mark Image
Grafic

Probleme similare din căutarea web

Partajați

x^{3}+27=0
Adăugați 27 la ambele părți.
±27,±9,±3,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 27 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=-3
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}-3x+9=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}+27 la x+3 pentru a obține x^{2}-3x+9. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 9}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu -3 și c cu 9.
x=\frac{3±\sqrt{-27}}{2}
Faceți calculele.
x=\frac{-3i\sqrt{3}+3}{2} x=\frac{3+3i\sqrt{3}}{2}
Rezolvați ecuația x^{2}-3x+9=0 când ± este plus și când ± este minus.
x=-3 x=\frac{-3i\sqrt{3}+3}{2} x=\frac{3+3i\sqrt{3}}{2}
Listați toate soluțiile găsite.
x^{3}+27=0
Adăugați 27 la ambele părți.
±27,±9,±3,±1
Conform teoremei rădăcinii raționale, toate rădăcinile raționale ale unui polinom sunt de forma \frac{p}{q}, unde p împarte termenul constant 27 și q împarte coeficientul inițial 1. Enumerați toți candidații \frac{p}{q}.
x=-3
Găsiți o astfel de rădăcină, încercând toate valorile întregi, pornind de la cea mai mică valoare absolută. Dacă nu s-au găsit rădăcini întregi, încercați fracțiuni.
x^{2}-3x+9=0
Conform teoremei descompunerii factoriale, x-k este un factor al polinomului pentru fiecare rădăcină k. Împărțiți x^{3}+27 la x+3 pentru a obține x^{2}-3x+9. Rezolvați ecuația unde rezultatul este egal cu 0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 1\times 9}}{2}
Toate ecuațiile de forma ax^{2}+bx+c=0 pot fi rezolvate folosind formula ecuației de gradul doi: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. În formulă, înlocuiți a cu 1, b cu -3 și c cu 9.
x=\frac{3±\sqrt{-27}}{2}
Faceți calculele.
x\in \emptyset
Pentru că rădăcina pătrată a unui număr negativ nu este definită în câmpul real, nu există soluții.
x=-3
Listați toate soluțiile găsite.