Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\int -3x^{2}\left(64\left(x^{3}\right)^{3}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
Utilizați binomul lui Newton \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} pentru a extinde \left(4x^{3}+4\right)^{3}.
\int -3x^{2}\left(64x^{9}+192\left(x^{3}\right)^{2}+192x^{3}+64\right)\mathrm{d}x
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 3 cu 3 pentru a obține 9.
\int -3x^{2}\left(64x^{9}+192x^{6}+192x^{3}+64\right)\mathrm{d}x
Pentru a ridica o putere la o altă putere, înmulțiți exponenții. Înmulțiți 3 cu 2 pentru a obține 6.
\int -192x^{11}-576x^{8}-576x^{5}-192x^{2}\mathrm{d}x
Utilizați proprietatea de distributivitate pentru a înmulți -3x^{2} cu 64x^{9}+192x^{6}+192x^{3}+64.
\int -192x^{11}\mathrm{d}x+\int -576x^{8}\mathrm{d}x+\int -576x^{5}\mathrm{d}x+\int -192x^{2}\mathrm{d}x
Integrați suma, termen cu termen.
-192\int x^{11}\mathrm{d}x-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
-16x^{12}-576\int x^{8}\mathrm{d}x-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{11}\mathrm{d}x cu \frac{x^{12}}{12}. Înmulțiți -192 cu \frac{x^{12}}{12}.
-16x^{12}-64x^{9}-576\int x^{5}\mathrm{d}x-192\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{8}\mathrm{d}x cu \frac{x^{9}}{9}. Înmulțiți -576 cu \frac{x^{9}}{9}.
-16x^{12}-64x^{9}-96x^{6}-192\int x^{2}\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{5}\mathrm{d}x cu \frac{x^{6}}{6}. Înmulțiți -576 cu \frac{x^{6}}{6}.
-16x^{12}-64x^{9}-96x^{6}-64x^{3}
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți -192 cu \frac{x^{3}}{3}.
-64x^{3}-96x^{6}-64x^{9}-16x^{12}+С
Dacă F\left(x\right) este o primitiva de f\left(x\right), atunci setul tuturor antiderivatives de f\left(x\right) este dat de F\left(x\right)+C. Prin urmare, adăugați constanta de integrare C\in \mathrm{R} la rezultat.