Evaluați
\frac{500}{x}+С
Calculați derivata în funcție de x
-\frac{500}{x^{2}}
Partajați
Copiat în clipboard
\int 0\times 1-\frac{500}{x^{2}}\mathrm{d}x
Înmulțiți 0 cu 0 pentru a obține 0.
\int 0-\frac{500}{x^{2}}\mathrm{d}x
Înmulțiți 0 cu 1 pentru a obține 0.
\int -\frac{500}{x^{2}}\mathrm{d}x
Orice număr plus zero este egal cu el însuși.
-500\int \frac{1}{x^{2}}\mathrm{d}x
Excludeți constanta utilizând \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-500\left(-\frac{1}{x}\right)
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int \frac{1}{x^{2}}\mathrm{d}x cu -\frac{1}{x}.
\frac{500}{x}
Simplificați.
\frac{500}{x}+С
Dacă F\left(x\right) este o primitiva de f\left(x\right), atunci setul tuturor antiderivatives de f\left(x\right) este dat de F\left(x\right)+C. Prin urmare, adăugați constanta de integrare C\in \mathrm{R} la rezultat.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}