Direct la conținutul principal
Evaluați
Tick mark Image
Calculați derivata în funcție de x
Tick mark Image

Probleme similare din căutarea web

Partajați

\int \left(x+1\right)^{2}\left(2x+2\right)\mathrm{d}x
Înmulțiți x+1 cu x+1 pentru a obține \left(x+1\right)^{2}.
\int \left(x^{2}+2x+1\right)\left(2x+2\right)\mathrm{d}x
Utilizați binomul lui Newton \left(a+b\right)^{2}=a^{2}+2ab+b^{2} pentru a extinde \left(x+1\right)^{2}.
\int 2x^{3}+2x^{2}+4x^{2}+4x+2x+2\mathrm{d}x
Aplicați proprietatea distributivă prin înmulțirea fiecărui termen de x^{2}+2x+1 la fiecare termen de 2x+2.
\int 2x^{3}+6x^{2}+4x+2x+2\mathrm{d}x
Combinați 2x^{2} cu 4x^{2} pentru a obține 6x^{2}.
\int 2x^{3}+6x^{2}+6x+2\mathrm{d}x
Combinați 4x cu 2x pentru a obține 6x.
\int 2x^{3}\mathrm{d}x+\int 6x^{2}\mathrm{d}x+\int 6x\mathrm{d}x+\int 2\mathrm{d}x
Integrați suma, termen cu termen.
2\int x^{3}\mathrm{d}x+6\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 2\mathrm{d}x
Eliminați constanta din fiecare dintre termeni.
\frac{x^{4}}{2}+6\int x^{2}\mathrm{d}x+6\int x\mathrm{d}x+\int 2\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{3}\mathrm{d}x cu \frac{x^{4}}{4}. Înmulțiți 2 cu \frac{x^{4}}{4}.
\frac{x^{4}}{2}+2x^{3}+6\int x\mathrm{d}x+\int 2\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x^{2}\mathrm{d}x cu \frac{x^{3}}{3}. Înmulțiți 6 cu \frac{x^{3}}{3}.
\frac{x^{4}}{2}+2x^{3}+3x^{2}+\int 2\mathrm{d}x
Deoarece \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} pentru k\neq -1, înlocuiți \int x\mathrm{d}x cu \frac{x^{2}}{2}. Înmulțiți 6 cu \frac{x^{2}}{2}.
\frac{x^{4}}{2}+2x^{3}+3x^{2}+2x
Găsiți integral 2 utilizând tabelul de reguli integrale comune \int a\mathrm{d}x=ax.
3x^{2}+2x^{3}+\frac{x^{4}}{2}+2x+С
Dacă F\left(x\right) este o primitiva de f\left(x\right), atunci setul tuturor antiderivatives de f\left(x\right) este dat de F\left(x\right)+C. Prin urmare, adăugați constanta de integrare C\in \mathrm{R} la rezultat.