Evaluați
\frac{x-5}{x+1}
Extindere
\frac{x-5}{x+1}
Grafic
Partajați
Copiat în clipboard
\frac{\frac{x^{2}-6x+5}{x^{2}-x-20}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Împărțiți \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} la \frac{x^{2}-4x-5}{x^{2}-10x+25} înmulțind pe \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} cu reciproca lui \frac{x^{2}-4x-5}{x^{2}-10x+25}.
\frac{\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x+4\right)}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja în \frac{x^{2}-6x+5}{x^{2}-x-20}.
\frac{\frac{x-1}{x+4}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Reduceți prin eliminare x-5 atât în numărător, cât și în numitor.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Exprimați \frac{x-1}{x+4}\left(x^{2}-10x+25\right) ca fracție unică.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}}
Exprimați \frac{x-1}{x+4}\left(x^{2}-4x-5\right) ca fracție unică.
\frac{\left(x-1\right)\left(x^{2}-10x+25\right)\left(x+4\right)}{\left(x+4\right)\left(x-1\right)\left(x^{2}-4x-5\right)}
Împărțiți \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} la \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4} înmulțind pe \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} cu reciproca lui \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}.
\frac{x^{2}-10x+25}{x^{2}-4x-5}
Reduceți prin eliminare \left(x-1\right)\left(x+4\right) atât în numărător, cât și în numitor.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)\left(x+1\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja.
\frac{x-5}{x+1}
Reduceți prin eliminare x-5 atât în numărător, cât și în numitor.
\frac{\frac{x^{2}-6x+5}{x^{2}-x-20}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Împărțiți \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} la \frac{x^{2}-4x-5}{x^{2}-10x+25} înmulțind pe \frac{\frac{x^{2}-6x+5}{x^{2}-x-20}}{\frac{x-1}{x+4}} cu reciproca lui \frac{x^{2}-4x-5}{x^{2}-10x+25}.
\frac{\frac{\left(x-5\right)\left(x-1\right)}{\left(x-5\right)\left(x+4\right)}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja în \frac{x^{2}-6x+5}{x^{2}-x-20}.
\frac{\frac{x-1}{x+4}\left(x^{2}-10x+25\right)}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Reduceți prin eliminare x-5 atât în numărător, cât și în numitor.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{x-1}{x+4}\left(x^{2}-4x-5\right)}
Exprimați \frac{x-1}{x+4}\left(x^{2}-10x+25\right) ca fracție unică.
\frac{\frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4}}{\frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}}
Exprimați \frac{x-1}{x+4}\left(x^{2}-4x-5\right) ca fracție unică.
\frac{\left(x-1\right)\left(x^{2}-10x+25\right)\left(x+4\right)}{\left(x+4\right)\left(x-1\right)\left(x^{2}-4x-5\right)}
Împărțiți \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} la \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4} înmulțind pe \frac{\left(x-1\right)\left(x^{2}-10x+25\right)}{x+4} cu reciproca lui \frac{\left(x-1\right)\left(x^{2}-4x-5\right)}{x+4}.
\frac{x^{2}-10x+25}{x^{2}-4x-5}
Reduceți prin eliminare \left(x-1\right)\left(x+4\right) atât în numărător, cât și în numitor.
\frac{\left(x-5\right)^{2}}{\left(x-5\right)\left(x+1\right)}
Descompuneți în factori expresiile care nu sunt descompuse deja.
\frac{x-5}{x+1}
Reduceți prin eliminare x-5 atât în numărător, cât și în numitor.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}