Evaluați
\frac{\sqrt{15}\left(\sqrt{30}+4\right)}{50}\approx 0,734102736
Descompunere în factori
\frac{\sqrt{15} {(\sqrt{2} \sqrt{15} + 4)}}{50} = 0,734102736408522
Partajați
Copiat în clipboard
\frac{3\sqrt{10}\sqrt{5}}{10\times 5}+\frac{\sqrt{10}}{10}\times \frac{2\sqrt{6}}{5}
Înmulțiți \frac{3\sqrt{10}}{10} cu \frac{\sqrt{5}}{5} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{3\sqrt{10}\sqrt{5}}{10\times 5}+\frac{\sqrt{10}\times 2\sqrt{6}}{10\times 5}
Înmulțiți \frac{\sqrt{10}}{10} cu \frac{2\sqrt{6}}{5} prin înmulțirea valorilor de la numărător și a valorilor de la numitor.
\frac{3\sqrt{10}\sqrt{5}}{10\times 5}+\frac{\sqrt{6}\sqrt{10}}{5\times 5}
Reduceți prin eliminare 2 atât în numărător, cât și în numitor.
\frac{3\sqrt{10}\sqrt{5}}{5\times 10}+\frac{\sqrt{6}\sqrt{10}}{5\times 10}
Pentru a adăuga sau a scădea expresii, extindeți-le pentru a face identici numitorii lor. Extindeți 5\times 5.
\frac{3\sqrt{10}\sqrt{5}+\sqrt{6}\sqrt{10}}{5\times 10}
Deoarece \frac{3\sqrt{10}\sqrt{5}}{5\times 10} și \frac{\sqrt{6}\sqrt{10}}{5\times 10} au același numitor comun, adunați-le adunând numărătorii lor.
\frac{15\sqrt{2}+2\sqrt{15}}{5\times 10}
Faceți înmulțiri în 3\sqrt{10}\sqrt{5}+\sqrt{6}\sqrt{10}.
\frac{15\sqrt{2}+2\sqrt{15}}{50}
Extindeți 5\times 10.
Exemple
Ecuație de gradul 2
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometrie
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuație liniară
y = 3x + 4
Aritmetică
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Sistem de ecuații
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Derivare
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrare
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limite
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}