Pular para o conteúdo principal
Resolva para x (complex solution)
Tick mark Image
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

x^{2}+2x-45=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-2±\sqrt{2^{2}-4\left(-45\right)}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 2 por b e -45 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-45\right)}}{2}
Calcule o quadrado de 2.
x=\frac{-2±\sqrt{4+180}}{2}
Multiplique -4 vezes -45.
x=\frac{-2±\sqrt{184}}{2}
Some 4 com 180.
x=\frac{-2±2\sqrt{46}}{2}
Calcule a raiz quadrada de 184.
x=\frac{2\sqrt{46}-2}{2}
Agora, resolva a equação x=\frac{-2±2\sqrt{46}}{2} quando ± for uma adição. Some -2 com 2\sqrt{46}.
x=\sqrt{46}-1
Divida -2+2\sqrt{46} por 2.
x=\frac{-2\sqrt{46}-2}{2}
Agora, resolva a equação x=\frac{-2±2\sqrt{46}}{2} quando ± for uma subtração. Subtraia 2\sqrt{46} de -2.
x=-\sqrt{46}-1
Divida -2-2\sqrt{46} por 2.
x=\sqrt{46}-1 x=-\sqrt{46}-1
A equação está resolvida.
x^{2}+2x-45=0
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
x^{2}+2x-45-\left(-45\right)=-\left(-45\right)
Some 45 a ambos os lados da equação.
x^{2}+2x=-\left(-45\right)
Subtrair -45 do próprio valor devolve o resultado 0.
x^{2}+2x=45
Subtraia -45 de 0.
x^{2}+2x+1^{2}=45+1^{2}
Divida 2, o coeficiente do termo x, 2 para obter 1. Em seguida, adicione o quadrado de 1 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}+2x+1=45+1
Calcule o quadrado de 1.
x^{2}+2x+1=46
Some 45 com 1.
\left(x+1\right)^{2}=46
Fatorize x^{2}+2x+1. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{46}
Calcule a raiz quadrada de ambos os lados da equação.
x+1=\sqrt{46} x+1=-\sqrt{46}
Simplifique.
x=\sqrt{46}-1 x=-\sqrt{46}-1
Subtraia 1 de ambos os lados da equação.
x^{2}+2x-45=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-2±\sqrt{2^{2}-4\left(-45\right)}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 2 por b e -45 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-45\right)}}{2}
Calcule o quadrado de 2.
x=\frac{-2±\sqrt{4+180}}{2}
Multiplique -4 vezes -45.
x=\frac{-2±\sqrt{184}}{2}
Some 4 com 180.
x=\frac{-2±2\sqrt{46}}{2}
Calcule a raiz quadrada de 184.
x=\frac{2\sqrt{46}-2}{2}
Agora, resolva a equação x=\frac{-2±2\sqrt{46}}{2} quando ± for uma adição. Some -2 com 2\sqrt{46}.
x=\sqrt{46}-1
Divida -2+2\sqrt{46} por 2.
x=\frac{-2\sqrt{46}-2}{2}
Agora, resolva a equação x=\frac{-2±2\sqrt{46}}{2} quando ± for uma subtração. Subtraia 2\sqrt{46} de -2.
x=-\sqrt{46}-1
Divida -2-2\sqrt{46} por 2.
x=\sqrt{46}-1 x=-\sqrt{46}-1
A equação está resolvida.
x^{2}+2x-45=0
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
x^{2}+2x-45-\left(-45\right)=-\left(-45\right)
Some 45 a ambos os lados da equação.
x^{2}+2x=-\left(-45\right)
Subtrair -45 do próprio valor devolve o resultado 0.
x^{2}+2x=45
Subtraia -45 de 0.
x^{2}+2x+1^{2}=45+1^{2}
Divida 2, o coeficiente do termo x, 2 para obter 1. Em seguida, adicione o quadrado de 1 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}+2x+1=45+1
Calcule o quadrado de 1.
x^{2}+2x+1=46
Some 45 com 1.
\left(x+1\right)^{2}=46
Fatorize x^{2}+2x+1. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{46}
Calcule a raiz quadrada de ambos os lados da equação.
x+1=\sqrt{46} x+1=-\sqrt{46}
Simplifique.
x=\sqrt{46}-1 x=-\sqrt{46}-1
Subtraia 1 de ambos os lados da equação.