Fatorizar
\left(p-12\right)\left(p+4\right)
Avaliar
\left(p-12\right)\left(p+4\right)
Compartilhar
Copiado para a área de transferência
a+b=-8 ab=1\left(-48\right)=-48
Fatorize a expressão ao agrupar. Em primeiro lugar, a expressão tem de ser reescrita como p^{2}+ap+bp-48. Para encontrar a e b, criar um sistema a ser resolvido.
1,-48 2,-24 3,-16 4,-12 6,-8
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez a+b negativo, o número negativo tem um valor absoluto maior do que o positivo. Apresente todos os pares de números inteiros que devolvem o produto -48.
1-48=-47 2-24=-22 3-16=-13 4-12=-8 6-8=-2
Calcule a soma de cada par.
a=-12 b=4
A solução é o par que devolve a soma -8.
\left(p^{2}-12p\right)+\left(4p-48\right)
Reescreva p^{2}-8p-48 como \left(p^{2}-12p\right)+\left(4p-48\right).
p\left(p-12\right)+4\left(p-12\right)
Fator out p no primeiro e 4 no segundo grupo.
\left(p-12\right)\left(p+4\right)
Decomponha o termo comum p-12 ao utilizar a propriedade distributiva.
p^{2}-8p-48=0
O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
p=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\left(-48\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
p=\frac{-\left(-8\right)±\sqrt{64-4\left(-48\right)}}{2}
Calcule o quadrado de -8.
p=\frac{-\left(-8\right)±\sqrt{64+192}}{2}
Multiplique -4 vezes -48.
p=\frac{-\left(-8\right)±\sqrt{256}}{2}
Some 64 com 192.
p=\frac{-\left(-8\right)±16}{2}
Calcule a raiz quadrada de 256.
p=\frac{8±16}{2}
O oposto de -8 é 8.
p=\frac{24}{2}
Agora, resolva a equação p=\frac{8±16}{2} quando ± for uma adição. Some 8 com 16.
p=12
Divida 24 por 2.
p=-\frac{8}{2}
Agora, resolva a equação p=\frac{8±16}{2} quando ± for uma subtração. Subtraia 16 de 8.
p=-4
Divida -8 por 2.
p^{2}-8p-48=\left(p-12\right)\left(p-\left(-4\right)\right)
Fatorize a expressão original através de ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitua 12 por x_{1} e -4 por x_{2}.
p^{2}-8p-48=\left(p-12\right)\left(p+4\right)
Simplifique todas as expressões de p-\left(-q\right) para p+q.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}