Resolva para A (complex solution)
\left\{\begin{matrix}A=\frac{B+C_{y}+7C}{y}\text{, }&y\neq 0\\A\in \mathrm{C}\text{, }&B=-C_{y}-7C\text{ and }y=0\end{matrix}\right,
Resolva para A
\left\{\begin{matrix}A=\frac{B+C_{y}+7C}{y}\text{, }&y\neq 0\\A\in \mathrm{R}\text{, }&B=-C_{y}-7C\text{ and }y=0\end{matrix}\right,
Resolva para B
B=Ay-C_{y}-7C
Gráfico
Compartilhar
Copiado para a área de transferência
Ay=C_{y}+7C+B
Adicionar B em ambos os lados.
yA=B+7C+C_{y}
A equação está no formato padrão.
\frac{yA}{y}=\frac{B+7C+C_{y}}{y}
Divida ambos os lados por y.
A=\frac{B+7C+C_{y}}{y}
Dividir por y anula a multiplicação por y.
A=\frac{B+C_{y}+7C}{y}
Divida B+7C+C_{y} por y.
Ay=C_{y}+7C+B
Adicionar B em ambos os lados.
yA=B+7C+C_{y}
A equação está no formato padrão.
\frac{yA}{y}=\frac{B+7C+C_{y}}{y}
Divida ambos os lados por y.
A=\frac{B+7C+C_{y}}{y}
Dividir por y anula a multiplicação por y.
A=\frac{B+C_{y}+7C}{y}
Divida B+7C+C_{y} por y.
-B=C_{y}+7C-Ay
Subtraia Ay de ambos os lados.
-B=7C+C_{y}-Ay
A equação está no formato padrão.
\frac{-B}{-1}=\frac{7C+C_{y}-Ay}{-1}
Divida ambos os lados por -1.
B=\frac{7C+C_{y}-Ay}{-1}
Dividir por -1 anula a multiplicação por -1.
B=Ay-C_{y}-7C
Divida C_{y}+7C-Ay por -1.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}