Resolver o valor x
x\geq \frac{55}{7}
Gráfico
Compartilhar
Copiado para a área de transferência
10x-40\geq 3\left(x+5\right)
Utilize a propriedade distributiva para multiplicar 5 por 2x-8.
10x-40\geq 3x+15
Utilize a propriedade distributiva para multiplicar 3 por x+5.
10x-40-3x\geq 15
Subtraia 3x de ambos os lados.
7x-40\geq 15
Combine 10x e -3x para obter 7x.
7x\geq 15+40
Adicionar 40 em ambos os lados.
7x\geq 55
Some 15 e 40 para obter 55.
x\geq \frac{55}{7}
Divida ambos os lados por 7. Uma vez que 7 é positivo, a direção da desigualdade não é alterada.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}