Pular para o conteúdo principal
Resolva para c
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

15-5\int x^{\frac{4}{3}}\mathrm{d}x=3x^{\frac{3}{3}}+5c
Multiplique ambos os lados da equação por 5.
15-5\int x^{\frac{4}{3}}\mathrm{d}x=3x^{1}+5c
Dividir 3 por 3 para obter 1.
15-5\int x^{\frac{4}{3}}\mathrm{d}x=3x+5c
Calcule x elevado a 1 e obtenha x.
3x+5c=15-5\int x^{\frac{4}{3}}\mathrm{d}x
Troque os lados para que todos os termos variáveis estejam no lado esquerdo.
5c=15-5\int x^{\frac{4}{3}}\mathrm{d}x-3x
Subtraia 3x de ambos os lados.
5c=-\frac{15x^{\frac{7}{3}}}{7}-3x-5С+15
A equação está no formato padrão.
\frac{5c}{5}=\frac{-\frac{15x^{\frac{7}{3}}}{7}-3x-5С+15}{5}
Divida ambos os lados por 5.
c=\frac{-\frac{15x^{\frac{7}{3}}}{7}-3x-5С+15}{5}
Dividir por 5 anula a multiplicação por 5.
c=-\frac{3x^{\frac{7}{3}}}{7}-\frac{3x}{5}-С+3
Divida 15-\frac{15x^{\frac{7}{3}}}{7}-5С-3x por 5.