Pular para o conteúdo principal
Resolver o valor x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

2x^{2}+4x-2=0
Para resolver a desigualdade, fatorize o lado esquerdo. O polinómio quadrático pode ser fatorizado através da transformação ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), em que x_{1} e x_{2} são as soluções da equação quadrática ax^{2}+bx+c=0.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-2\right)}}{2\times 2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitua 2 por a, 4 por b e -2 por c na fórmula quadrática.
x=\frac{-4±4\sqrt{2}}{4}
Efetue os cálculos.
x=\sqrt{2}-1 x=-\sqrt{2}-1
Resolva a equação x=\frac{-4±4\sqrt{2}}{4} quando ± é mais e quando ± é menos.
2\left(x-\left(\sqrt{2}-1\right)\right)\left(x-\left(-\sqrt{2}-1\right)\right)\leq 0
Rescreva a desigualdade ao utilizar as soluções obtidas.
x-\left(\sqrt{2}-1\right)\geq 0 x-\left(-\sqrt{2}-1\right)\leq 0
Para que o produto seja ≤0, um dos valores x-\left(\sqrt{2}-1\right) e x-\left(-\sqrt{2}-1\right) tem de ser ≥0 e o outro tem de ser ≤0. Considere o caso quando x-\left(\sqrt{2}-1\right)\geq 0 e x-\left(-\sqrt{2}-1\right)\leq 0.
x\in \emptyset
Isto é falso para qualquer valor x.
x-\left(-\sqrt{2}-1\right)\geq 0 x-\left(\sqrt{2}-1\right)\leq 0
Considere o caso quando x-\left(\sqrt{2}-1\right)\leq 0 e x-\left(-\sqrt{2}-1\right)\geq 0.
x\in \begin{bmatrix}-\left(\sqrt{2}+1\right),\sqrt{2}-1\end{bmatrix}
A solução que satisfaz ambas as desigualdades é x\in \left[-\left(\sqrt{2}+1\right),\sqrt{2}-1\right].
x\in \begin{bmatrix}-\sqrt{2}-1,\sqrt{2}-1\end{bmatrix}
A solução final é a união das soluções obtidas.