Resolva para x
x=3
Gráfico
Compartilhar
Copiado para a área de transferência
2-3x\left(4-x\right)-x^{2}=-16
Subtraia x^{2} de ambos os lados.
2-3x\left(4-x\right)-x^{2}+16=0
Adicionar 16 em ambos os lados.
2-12x+3x^{2}-x^{2}+16=0
Utilize a propriedade distributiva para multiplicar -3x por 4-x.
2-12x+2x^{2}+16=0
Combine 3x^{2} e -x^{2} para obter 2x^{2}.
18-12x+2x^{2}=0
Some 2 e 16 para obter 18.
9-6x+x^{2}=0
Divida ambos os lados por 2.
x^{2}-6x+9=0
Reformule o polinómio para o colocar no formato padrão. Coloque os termos pela ordem da potência mais elevada para a mais baixa.
a+b=-6 ab=1\times 9=9
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como x^{2}+ax+bx+9. Para encontrar a e b, criar um sistema a ser resolvido.
-1,-9 -3,-3
Uma vez que ab é positivo, a e b têm o mesmo sinal. Uma vez que a+b é negativo, a e b são ambos negativos. Apresente todos os pares de números inteiros que devolvem o produto 9.
-1-9=-10 -3-3=-6
Calcule a soma de cada par.
a=-3 b=-3
A solução é o par que devolve a soma -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Reescreva x^{2}-6x+9 como \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Fator out x no primeiro e -3 no segundo grupo.
\left(x-3\right)\left(x-3\right)
Decomponha o termo comum x-3 ao utilizar a propriedade distributiva.
\left(x-3\right)^{2}
Reescreva como um quadrado binomial.
x=3
Para localizar a solução da equação, resolva x-3=0.
2-3x\left(4-x\right)-x^{2}=-16
Subtraia x^{2} de ambos os lados.
2-3x\left(4-x\right)-x^{2}+16=0
Adicionar 16 em ambos os lados.
2-12x+3x^{2}-x^{2}+16=0
Utilize a propriedade distributiva para multiplicar -3x por 4-x.
2-12x+2x^{2}+16=0
Combine 3x^{2} e -x^{2} para obter 2x^{2}.
18-12x+2x^{2}=0
Some 2 e 16 para obter 18.
2x^{2}-12x+18=0
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 2\times 18}}{2\times 2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 2 por a, -12 por b e 18 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 2\times 18}}{2\times 2}
Calcule o quadrado de -12.
x=\frac{-\left(-12\right)±\sqrt{144-8\times 18}}{2\times 2}
Multiplique -4 vezes 2.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 2}
Multiplique -8 vezes 18.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 2}
Some 144 com -144.
x=-\frac{-12}{2\times 2}
Calcule a raiz quadrada de 0.
x=\frac{12}{2\times 2}
O oposto de -12 é 12.
x=\frac{12}{4}
Multiplique 2 vezes 2.
x=3
Divida 12 por 4.
2-3x\left(4-x\right)-x^{2}=-16
Subtraia x^{2} de ambos os lados.
2-12x+3x^{2}-x^{2}=-16
Utilize a propriedade distributiva para multiplicar -3x por 4-x.
2-12x+2x^{2}=-16
Combine 3x^{2} e -x^{2} para obter 2x^{2}.
-12x+2x^{2}=-16-2
Subtraia 2 de ambos os lados.
-12x+2x^{2}=-18
Subtraia 2 de -16 para obter -18.
2x^{2}-12x=-18
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
\frac{2x^{2}-12x}{2}=-\frac{18}{2}
Divida ambos os lados por 2.
x^{2}+\left(-\frac{12}{2}\right)x=-\frac{18}{2}
Dividir por 2 anula a multiplicação por 2.
x^{2}-6x=-\frac{18}{2}
Divida -12 por 2.
x^{2}-6x=-9
Divida -18 por 2.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divida -6, o coeficiente do termo x, 2 para obter -3. Em seguida, adicione o quadrado de -3 para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}-6x+9=-9+9
Calcule o quadrado de -3.
x^{2}-6x+9=0
Some -9 com 9.
\left(x-3\right)^{2}=0
Fatorize x^{2}-6x+9. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Calcule a raiz quadrada de ambos os lados da equação.
x-3=0 x-3=0
Simplifique.
x=3 x=3
Some 3 a ambos os lados da equação.
x=3
A equação está resolvida. As soluções são iguais.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}