Pular para o conteúdo principal
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

2x^{2}+x-3=0
Subtraia 3 de ambos os lados.
a+b=1 ab=2\left(-3\right)=-6
Para resolver a equação, fatorize o lado esquerdo ao agrupar. Em primeiro lugar, o lado esquerdo tem de ser reescrito como 2x^{2}+ax+bx-3. Para encontrar a e b, criar um sistema a ser resolvido.
-1,6 -2,3
Uma vez que ab é negativo, a e b têm os sinais opostos. Uma vez que a+b é positivo, o número positivo tem um valor absoluto maior do que o negativo. Apresente todos os pares de números inteiros que devolvem o produto -6.
-1+6=5 -2+3=1
Calcule a soma de cada par.
a=-2 b=3
A solução é o par que devolve a soma 1.
\left(2x^{2}-2x\right)+\left(3x-3\right)
Reescreva 2x^{2}+x-3 como \left(2x^{2}-2x\right)+\left(3x-3\right).
2x\left(x-1\right)+3\left(x-1\right)
Fator out 2x no primeiro e 3 no segundo grupo.
\left(x-1\right)\left(2x+3\right)
Decomponha o termo comum x-1 ao utilizar a propriedade distributiva.
x=1 x=-\frac{3}{2}
Para encontrar soluções de equação, resolva x-1=0 e 2x+3=0.
2x^{2}+x=3
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. A fórmula quadrática fornece duas soluções, uma quando ± corresponde à adição e outra quando corresponde à subtração.
2x^{2}+x-3=3-3
Subtraia 3 de ambos os lados da equação.
2x^{2}+x-3=0
Subtrair 3 do próprio valor devolve o resultado 0.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-3\right)}}{2\times 2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 2 por a, 1 por b e -3 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Calcule o quadrado de 1.
x=\frac{-1±\sqrt{1-8\left(-3\right)}}{2\times 2}
Multiplique -4 vezes 2.
x=\frac{-1±\sqrt{1+24}}{2\times 2}
Multiplique -8 vezes -3.
x=\frac{-1±\sqrt{25}}{2\times 2}
Some 1 com 24.
x=\frac{-1±5}{2\times 2}
Calcule a raiz quadrada de 25.
x=\frac{-1±5}{4}
Multiplique 2 vezes 2.
x=\frac{4}{4}
Agora, resolva a equação x=\frac{-1±5}{4} quando ± for uma adição. Some -1 com 5.
x=1
Divida 4 por 4.
x=-\frac{6}{4}
Agora, resolva a equação x=\frac{-1±5}{4} quando ± for uma subtração. Subtraia 5 de -1.
x=-\frac{3}{2}
Reduza a fração \frac{-6}{4} para os termos mais baixos ao retirar e anular 2.
x=1 x=-\frac{3}{2}
A equação está resolvida.
2x^{2}+x=3
As equações quadráticas tal como esta podem ser resolvidas através da conclusão do quadrado. Para concluir o quadrado, primeiro a equação tem de estar no formato x^{2}+bx=c.
\frac{2x^{2}+x}{2}=\frac{3}{2}
Divida ambos os lados por 2.
x^{2}+\frac{1}{2}x=\frac{3}{2}
Dividir por 2 anula a multiplicação por 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
Divida \frac{1}{2}, o coeficiente do termo x, 2 para obter \frac{1}{4}. Em seguida, adicione o quadrado de \frac{1}{4} para ambos os lados da equação. Este passo faz do lado esquerdo da equação um quadrado perfeito.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Calcule o quadrado de \frac{1}{4}, ao elevar ao quadrado o numerador e o denominador da fração.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
Some \frac{3}{2} com \frac{1}{16} ao localizar um denominador comum e ao somar os numeradores. Em seguida, se possível, reduza a fração para os termos mais baixos.
\left(x+\frac{1}{4}\right)^{2}=\frac{25}{16}
Fatorize x^{2}+\frac{1}{2}x+\frac{1}{16}. Em geral, quando x^{2}+bx+c é um quadrado perfeito, pode sempre ser fatorizado como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Calcule a raiz quadrada de ambos os lados da equação.
x+\frac{1}{4}=\frac{5}{4} x+\frac{1}{4}=-\frac{5}{4}
Simplifique.
x=1 x=-\frac{3}{2}
Subtraia \frac{1}{4} de ambos os lados da equação.