Avaliar
-\frac{2001x^{2}}{25000000000000000000}
Calcular a diferenciação com respeito a x
-\frac{2001x}{12500000000000000000}
Gráfico
Compartilhar
Copiado para a área de transferência
-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplique x e x para obter x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Calcule 10 elevado a -11 e obtenha \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplique -667 e \frac{1}{100000000000} para obter -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Anule 3 no numerador e no denominador.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Calcule 10 elevado a 8 e obtenha 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Multiplique 5 e 100000000 para obter 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Dividir 6x^{2} por 500000000 para obter \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Multiplique -\frac{667}{100000000000} e \frac{3}{250000000} para obter -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplique x e x para obter x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Calcule 10 elevado a -11 e obtenha \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplique -667 e \frac{1}{100000000000} para obter -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Anule 3 no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Calcule 10 elevado a 8 e obtenha 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Multiplique 5 e 100000000 para obter 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Dividir 6x^{2} por 500000000 para obter \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Multiplique -\frac{667}{100000000000} e \frac{3}{250000000} para obter -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
A derivada da ax^{n} é nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Multiplique 2 vezes -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Subtraia 1 de 2.
-\frac{2001}{12500000000000000000}x
Para qualquer termo t, t^{1}=t.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}