Pular para o conteúdo principal
Avaliar
Tick mark Image
Calcular a diferenciação com respeito a x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplique x e x para obter x^{2}.
-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Calcule 10 elevado a -11 e obtenha \frac{1}{100000000000}.
-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}}
Multiplique -667 e \frac{1}{100000000000} para obter -\frac{667}{100000000000}.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}}
Anule 3 no numerador e no denominador.
-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000}
Calcule 10 elevado a 8 e obtenha 100000000.
-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000}
Multiplique 5 e 100000000 para obter 500000000.
-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2}
Dividir 6x^{2} por 500000000 para obter \frac{3}{250000000}x^{2}.
-\frac{2001}{25000000000000000000}x^{2}
Multiplique -\frac{667}{100000000000} e \frac{3}{250000000} para obter -\frac{2001}{25000000000000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times 10^{-11}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplique x e x para obter x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-667\times \frac{1}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Calcule 10 elevado a -11 e obtenha \frac{1}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{18x^{2}}{15\times 10^{8}})
Multiplique -667 e \frac{1}{100000000000} para obter -\frac{667}{100000000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 10^{8}})
Anule 3 no numerador e no denominador.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{5\times 100000000})
Calcule 10 elevado a 8 e obtenha 100000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{6x^{2}}{500000000})
Multiplique 5 e 100000000 para obter 500000000.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{667}{100000000000}\times \frac{3}{250000000}x^{2})
Dividir 6x^{2} por 500000000 para obter \frac{3}{250000000}x^{2}.
\frac{\mathrm{d}}{\mathrm{d}x}(-\frac{2001}{25000000000000000000}x^{2})
Multiplique -\frac{667}{100000000000} e \frac{3}{250000000} para obter -\frac{2001}{25000000000000000000}.
2\left(-\frac{2001}{25000000000000000000}\right)x^{2-1}
A derivada da ax^{n} é nax^{n-1}.
-\frac{2001}{12500000000000000000}x^{2-1}
Multiplique 2 vezes -\frac{2001}{25000000000000000000}.
-\frac{2001}{12500000000000000000}x^{1}
Subtraia 1 de 2.
-\frac{2001}{12500000000000000000}x
Para qualquer termo t, t^{1}=t.