Resolva para x
x=7
Gráfico
Compartilhar
Copiado para a área de transferência
\left(x+1\right)\left(x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
A variável x não pode ser igual a nenhum dos valores -3,-1, pois a divisão por zero não está definida. Multiplicar ambos os lados da equação por 4\left(x+1\right)\left(x+3\right), o mínimo múltiplo comum de x+3,4\left(x^{2}+4x+3\right).
\left(x^{2}+4x+3\right)\left(x-2\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Utilize a propriedade distributiva para multiplicar x+1 por x+3 e combinar termos semelhantes.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{x^{2}-x-2}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Utilize a propriedade distributiva para multiplicar x^{2}+4x+3 por x-2 e combinar termos semelhantes.
\left(x^{3}+2x^{2}-5x-6\right)\left(3+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Fatorize a expressão x^{2}-x-2.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 3 vezes \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3\left(x-2\right)\left(x+1\right)+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Uma vez que \frac{3\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} e \frac{7x-5}{\left(x-2\right)\left(x+1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+3x-6x-6+7x-5}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Efetue as multiplicações em 3\left(x-2\right)\left(x+1\right)+7x-5.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x}{x+1}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Combine termos semelhantes em 3x^{2}+3x-6x-6+7x-5.
\left(x^{3}+2x^{2}-5x-6\right)\left(\frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)}-\frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}\right)+\left(4x+4\right)\times 5=9x^{2}+43x+8
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. O mínimo múltiplo comum de \left(x-2\right)\left(x+1\right) e x+1 é \left(x-2\right)\left(x+1\right). Multiplique \frac{3x}{x+1} vezes \frac{x-2}{x-2}.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Uma vez que \frac{3x^{2}+4x-11}{\left(x-2\right)\left(x+1\right)} e \frac{3x\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{3x^{2}+4x-11-3x^{2}+6x}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Efetue as multiplicações em 3x^{2}+4x-11-3x\left(x-2\right).
\left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Combine termos semelhantes em 3x^{2}+4x-11-3x^{2}+6x.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\left(4x+4\right)\times 5=9x^{2}+43x+8
Expresse \left(x^{3}+2x^{2}-5x-6\right)\times \frac{10x-11}{\left(x-2\right)\left(x+1\right)} como uma fração única.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+20x+20=9x^{2}+43x+8
Utilize a propriedade distributiva para multiplicar 4x+4 por 5.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)}+\frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 20x+20 vezes \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Uma vez que \frac{\left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)}{\left(x-2\right)\left(x+1\right)} e \frac{\left(20x+20\right)\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Efetue as multiplicações em \left(x^{3}+2x^{2}-5x-6\right)\left(10x-11\right)+\left(20x+20\right)\left(x-2\right)\left(x+1\right).
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=9x^{2}+43x+8
Combine termos semelhantes em 10x^{4}-11x^{3}+20x^{3}-22x^{2}-50x^{2}+55x-60x+66+20x^{3}-20x^{2}-40x+20x^{2}-20x-40.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}=9x^{2}+43x+8
Utilize a propriedade distributiva para multiplicar x-2 por x+1 e combinar termos semelhantes.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{x^{2}-x-2}-9x^{2}=43x+8
Subtraia 9x^{2} de ambos os lados.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-9x^{2}=43x+8
Fatorize a expressão x^{2}-x-2.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique -9x^{2} vezes \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=43x+8
Uma vez que \frac{10x^{4}+29x^{3}-72x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} e \frac{-9x^{2}\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}}{\left(x-2\right)\left(x+1\right)}=43x+8
Efetue as multiplicações em 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{2}\left(x-2\right)\left(x+1\right).
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}=43x+8
Combine termos semelhantes em 10x^{4}+29x^{3}-72x^{2}-65x+26-9x^{4}-9x^{3}+18x^{3}+18x^{2}.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Subtraia 43x de ambos os lados.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{x^{2}-x-2}-43x=8
Utilize a propriedade distributiva para multiplicar x-2 por x+1 e combinar termos semelhantes.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}-43x=8
Fatorize a expressão x^{2}-x-2.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)}+\frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique -43x vezes \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=8
Uma vez que \frac{x^{4}+38x^{3}-54x^{2}-65x+26}{\left(x-2\right)\left(x+1\right)} e \frac{-43x\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} têm o mesmo denominador, some-os ao somar os respetivos numeradores.
\frac{x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x}{\left(x-2\right)\left(x+1\right)}=8
Efetue as multiplicações em x^{4}+38x^{3}-54x^{2}-65x+26-43x\left(x-2\right)\left(x+1\right).
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}=8
Combine termos semelhantes em x^{4}+38x^{3}-54x^{2}-65x+26-43x^{3}-43x^{2}+86x^{2}+86x.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Subtraia 8 de ambos os lados.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{x^{2}-x-2}-8=0
Utilize a propriedade distributiva para multiplicar x-2 por x+1 e combinar termos semelhantes.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-8=0
Fatorize a expressão x^{2}-x-2.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)}-\frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Para adicionar ou subtrair expressões, expanda-as para que os denominadores sejam iguais. Multiplique 8 vezes \frac{\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=0
Uma vez que \frac{x^{4}-5x^{3}-11x^{2}+21x+26}{\left(x-2\right)\left(x+1\right)} e \frac{8\left(x-2\right)\left(x+1\right)}{\left(x-2\right)\left(x+1\right)} têm o mesmo denominador, subtraia-os ao subtrair os respetivos numeradores.
\frac{x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16}{\left(x-2\right)\left(x+1\right)}=0
Efetue as multiplicações em x^{4}-5x^{3}-11x^{2}+21x+26-8\left(x-2\right)\left(x+1\right).
\frac{x^{4}-5x^{3}-19x^{2}+29x+42}{\left(x-2\right)\left(x+1\right)}=0
Combine termos semelhantes em x^{4}-5x^{3}-11x^{2}+21x+26-8x^{2}-8x+16x+16.
x^{4}-5x^{3}-19x^{2}+29x+42=0
A variável x não pode ser igual a nenhum dos valores -1,2, pois a divisão por zero não está definida. Multiplique ambos os lados da equação por \left(x-2\right)\left(x+1\right).
±42,±21,±14,±7,±6,±3,±2,±1
De acordo com o Teorema das Raízes Racionais, todas as raízes racionais de um polinómio estão no formato \frac{p}{q}, em que p divide o termo constante 42 e q divide o coeficiente inicial 1. Indique todos os candidatos \frac{p}{q}.
x=-1
Encontre uma dessas raízes ao experimentar todos os valores inteiros. Comece pelo menor por valor absoluto. Se não encontrar nenhuma raiz de número inteiro, experimente frações.
x^{3}-6x^{2}-13x+42=0
Por teorema do fator, x-k é um fator do polinomial para cada raiz k. Dividir x^{4}-5x^{3}-19x^{2}+29x+42 por x+1 para obter x^{3}-6x^{2}-13x+42. Resolva a equação onde o resultado é igual a 0.
±42,±21,±14,±7,±6,±3,±2,±1
De acordo com o Teorema das Raízes Racionais, todas as raízes racionais de um polinómio estão no formato \frac{p}{q}, em que p divide o termo constante 42 e q divide o coeficiente inicial 1. Indique todos os candidatos \frac{p}{q}.
x=2
Encontre uma dessas raízes ao experimentar todos os valores inteiros. Comece pelo menor por valor absoluto. Se não encontrar nenhuma raiz de número inteiro, experimente frações.
x^{2}-4x-21=0
Por teorema do fator, x-k é um fator do polinomial para cada raiz k. Dividir x^{3}-6x^{2}-13x+42 por x-2 para obter x^{2}-4x-21. Resolva a equação onde o resultado é igual a 0.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 1\left(-21\right)}}{2}
Todas as equações com o formato ax^{2}+bx+c=0 podem ser resolvidas com a fórmula quadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitua 1 por a, -4 por b e -21 por c na fórmula quadrática.
x=\frac{4±10}{2}
Efetue os cálculos.
x=-3 x=7
Resolva a equação x^{2}-4x-21=0 quando ± é mais e quando ± é menos.
x=7
Remova os valores aos quais a variável não pode ser igual.
x=-1 x=2 x=-3 x=7
Apresente todas as soluções encontradas.
x=7
A variável x não pode ser igual a nenhum dos valores -1,2,-3.
Exemplos
Equação quadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equação linear
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equação simultânea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciação
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integração
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}