Pular para o conteúdo principal
Resolva para x
Tick mark Image
Gráfico

Problemas Semelhantes da Pesquisa na Web

Compartilhar

x^{2}-40+4=0
Adicionar 4 em ambos os lados.
x^{2}-36=0
Some -40 e 4 para obter -36.
\left(x-6\right)\left(x+6\right)=0
Considere x^{2}-36. Reescreva x^{2}-36 como x^{2}-6^{2}. A diferença de quadrados pode ser fatorizada através da regra: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=6 x=-6
Para encontrar soluções de equação, resolva x-6=0 e x+6=0.
x^{2}=-4+40
Adicionar 40 em ambos os lados.
x^{2}=36
Some -4 e 40 para obter 36.
x=6 x=-6
Calcule a raiz quadrada de ambos os lados da equação.
x^{2}-40+4=0
Adicionar 4 em ambos os lados.
x^{2}-36=0
Some -40 e 4 para obter -36.
x=\frac{0±\sqrt{0^{2}-4\left(-36\right)}}{2}
Esta equação está no formato padrão: ax^{2}+bx+c=0. Substitua 1 por a, 0 por b e -36 por c na fórmula quadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-36\right)}}{2}
Calcule o quadrado de 0.
x=\frac{0±\sqrt{144}}{2}
Multiplique -4 vezes -36.
x=\frac{0±12}{2}
Calcule a raiz quadrada de 144.
x=6
Agora, resolva a equação x=\frac{0±12}{2} quando ± for uma adição. Divida 12 por 2.
x=-6
Agora, resolva a equação x=\frac{0±12}{2} quando ± for uma subtração. Divida -12 por 2.
x=6 x=-6
A equação está resolvida.