Pular para o conteúdo principal
Avaliar
Tick mark Image
Calcular a diferenciação com respeito a x
Tick mark Image
Gráfico

Compartilhar

\frac{\frac{1}{1000000}\times 3^{-7}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Calcule 10 elevado a -6 e obtenha \frac{1}{1000000}.
\frac{\frac{1}{1000000}\times \frac{1}{2187}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Calcule 3 elevado a -7 e obtenha \frac{1}{2187}.
\frac{\frac{1}{2187000000}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Multiplique \frac{1}{1000000} e \frac{1}{2187} para obter \frac{1}{2187000000}.
\frac{\frac{1}{3499200}x^{-4}}{5^{-3}}\times 6^{-5}x^{-8}
Multiplique \frac{1}{2187000000} e 625 para obter \frac{1}{3499200}.
\frac{\frac{1}{3499200}x^{-4}}{\frac{1}{125}}\times 6^{-5}x^{-8}
Calcule 5 elevado a -3 e obtenha \frac{1}{125}.
\frac{1}{3499200}x^{-4}\times 125\times 6^{-5}x^{-8}
Divida \frac{1}{3499200}x^{-4} por \frac{1}{125} ao multiplicar \frac{1}{3499200}x^{-4} pelo recíproco de \frac{1}{125}.
\frac{5}{139968}x^{-4}\times 6^{-5}x^{-8}
Multiplique \frac{1}{3499200} e 125 para obter \frac{5}{139968}.
\frac{5}{139968}x^{-4}\times \frac{1}{7776}x^{-8}
Calcule 6 elevado a -5 e obtenha \frac{1}{7776}.
\frac{5}{1088391168}x^{-4}x^{-8}
Multiplique \frac{5}{139968} e \frac{1}{7776} para obter \frac{5}{1088391168}.
\frac{5}{1088391168}x^{-12}
Para multiplicar as potências da mesma base, some os seus expoentes. Some -4 e -8 para obter -12.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{1000000}\times 3^{-7}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Calcule 10 elevado a -6 e obtenha \frac{1}{1000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{1000000}\times \frac{1}{2187}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Calcule 3 elevado a -7 e obtenha \frac{1}{2187}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{2187000000}\times 625x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Multiplique \frac{1}{1000000} e \frac{1}{2187} para obter \frac{1}{2187000000}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3499200}x^{-4}}{5^{-3}}\times 6^{-5}x^{-8})
Multiplique \frac{1}{2187000000} e 625 para obter \frac{1}{3499200}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\frac{1}{3499200}x^{-4}}{\frac{1}{125}}\times 6^{-5}x^{-8})
Calcule 5 elevado a -3 e obtenha \frac{1}{125}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{3499200}x^{-4}\times 125\times 6^{-5}x^{-8})
Divida \frac{1}{3499200}x^{-4} por \frac{1}{125} ao multiplicar \frac{1}{3499200}x^{-4} pelo recíproco de \frac{1}{125}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{139968}x^{-4}\times 6^{-5}x^{-8})
Multiplique \frac{1}{3499200} e 125 para obter \frac{5}{139968}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{139968}x^{-4}\times \frac{1}{7776}x^{-8})
Calcule 6 elevado a -5 e obtenha \frac{1}{7776}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{1088391168}x^{-4}x^{-8})
Multiplique \frac{5}{139968} e \frac{1}{7776} para obter \frac{5}{1088391168}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5}{1088391168}x^{-12})
Para multiplicar as potências da mesma base, some os seus expoentes. Some -4 e -8 para obter -12.
-12\times \frac{5}{1088391168}x^{-12-1}
A derivada da ax^{n} é nax^{n-1}.
-\frac{5}{90699264}x^{-12-1}
Multiplique -12 vezes \frac{5}{1088391168}.
-\frac{5}{90699264}x^{-13}
Subtraia 1 de -12.