Pular para o conteúdo principal
Avaliar
Tick mark Image
Fatorizar
Tick mark Image

Problemas Semelhantes da Pesquisa na Web

Compartilhar

\sqrt{\frac{\left(\frac{11}{4}\times \frac{8}{11}\right)^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Para dividir as potências da mesma base, subtraia o expoente do denominador do expoente do numerador. Subtraia 1 de 2 para obter 1.
\sqrt{\frac{2^{2}}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiplique \frac{11}{4} e \frac{8}{11} para obter 2.
\sqrt{\frac{4}{\left(\frac{\frac{23}{12}-\frac{3}{2}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcule 2 elevado a 2 e obtenha 4.
\sqrt{\frac{4}{\left(\frac{\frac{5}{12}}{\frac{5}{4}}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Subtraia \frac{3}{2} de \frac{23}{12} para obter \frac{5}{12}.
\sqrt{\frac{4}{\left(\frac{5}{12}\times \frac{4}{5}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divida \frac{5}{12} por \frac{5}{4} ao multiplicar \frac{5}{12} pelo recíproco de \frac{5}{4}.
\sqrt{\frac{4}{\left(\frac{1}{3}\right)^{2}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiplique \frac{5}{12} e \frac{4}{5} para obter \frac{1}{3}.
\sqrt{\frac{4}{\frac{1}{9}}}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcule \frac{1}{3} elevado a 2 e obtenha \frac{1}{9}.
\sqrt{4\times 9}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Divida 4 por \frac{1}{9} ao multiplicar 4 pelo recíproco de \frac{1}{9}.
\sqrt{36}-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Multiplique 4 e 9 para obter 36.
6-\sqrt{10+\frac{\left(\frac{1}{2}\right)^{1}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcule a raiz quadrada de 36 e obtenha 6.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\left(\frac{5}{4}-\frac{1}{6}\right)}{\frac{8}{3}}}
Calcule \frac{1}{2} elevado a 1 e obtenha \frac{1}{2}.
6-\sqrt{10+\frac{\frac{1}{2}+\frac{12}{13}\times \frac{13}{12}}{\frac{8}{3}}}
Subtraia \frac{1}{6} de \frac{5}{4} para obter \frac{13}{12}.
6-\sqrt{10+\frac{\frac{1}{2}+1}{\frac{8}{3}}}
Multiplique \frac{12}{13} e \frac{13}{12} para obter 1.
6-\sqrt{10+\frac{\frac{3}{2}}{\frac{8}{3}}}
Some \frac{1}{2} e 1 para obter \frac{3}{2}.
6-\sqrt{10+\frac{3}{2}\times \frac{3}{8}}
Divida \frac{3}{2} por \frac{8}{3} ao multiplicar \frac{3}{2} pelo recíproco de \frac{8}{3}.
6-\sqrt{10+\frac{9}{16}}
Multiplique \frac{3}{2} e \frac{3}{8} para obter \frac{9}{16}.
6-\sqrt{\frac{169}{16}}
Some 10 e \frac{9}{16} para obter \frac{169}{16}.
6-\frac{13}{4}
Reescreva a raiz quadrada da divisão \frac{169}{16} à medida que a divisão de raízes quadradas \frac{\sqrt{169}}{\sqrt{16}}. Calcule a raiz quadrada do numerador e do denominador.
\frac{11}{4}
Subtraia \frac{13}{4} de 6 para obter \frac{11}{4}.