Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\left(x+5\right)\left(x^{2}-6x+8\right)
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 40, a q jest dzielnikiem współczynnika wiodącego 1. Jeden z tych pierwiastków wynosi -5. Rozłóż wielomian na czynniki, dzieląc go przez x+5.
a+b=-6 ab=1\times 8=8
Rozważ x^{2}-6x+8. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx+8. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-8 -2,-4
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 8.
-1-8=-9 -2-4=-6
Oblicz sumę dla każdej pary.
a=-4 b=-2
Rozwiązanie to para, która daje sumę -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Przepisz x^{2}-6x+8 jako \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
x w pierwszej i -2 w drugiej grupie.
\left(x-4\right)\left(x-2\right)
Wyłącz przed nawias wspólny czynnik x-4, używając właściwości rozdzielności.
\left(x-4\right)\left(x-2\right)\left(x+5\right)
Przepisz całe wyrażenie rozłożone na czynniki.