Przejdź do głównej zawartości
Rozwiąż względem x (complex solution)
Tick mark Image
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

±16,±8,±4,±2,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -16, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=2
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{2}+3x+8=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{3}+x^{2}+2x-16 przez x-2, aby uzyskać x^{2}+3x+8. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 8}}{2}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 1 do a, 3 do b i 8 do c w formule kwadratowej.
x=\frac{-3±\sqrt{-23}}{2}
Wykonaj obliczenia.
x=\frac{-\sqrt{23}i-3}{2} x=\frac{-3+\sqrt{23}i}{2}
Umożliwia rozwiązanie równania x^{2}+3x+8=0, gdy ± jest Plus i gdy ± jest pomniejszona.
x=2 x=\frac{-\sqrt{23}i-3}{2} x=\frac{-3+\sqrt{23}i}{2}
Wyświetl listę wszystkich znalezionych rozwiązań.
±16,±8,±4,±2,±1
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -16, a q jest dzielnikiem współczynnika wiodącego 1. Wyświetl listę wszystkich kandydatów \frac{p}{q}.
x=2
Znajdź jeden taki pierwiastek przez wypróbowanie wszystkich wartości całkowitych, zaczynając od najmniejszej wartości bezwzględnej. Jeśli nie zostaną znalezione żadne pierwiastki, wypróbuj ułamki.
x^{2}+3x+8=0
Według twierdzenia o rozkładzie wielomianu na czynniki x-k jest współczynnikiem wielomianu dla każdego pierwiastka k. Podziel x^{3}+x^{2}+2x-16 przez x-2, aby uzyskać x^{2}+3x+8. Umożliwia rozwiązanie równania, którego wynik jest równy 0.
x=\frac{-3±\sqrt{3^{2}-4\times 1\times 8}}{2}
Wszystkie równania formularza ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Podstaw 1 do a, 3 do b i 8 do c w formule kwadratowej.
x=\frac{-3±\sqrt{-23}}{2}
Wykonaj obliczenia.
x\in \emptyset
Pierwiastek kwadratowy liczby ujemnej nie jest zdefiniowany w ciele liczb rzeczywistych, dlatego nie ma rozwiązań.
x=2
Wyświetl listę wszystkich znalezionych rozwiązań.