Rozwiąż względem p
\left\{\begin{matrix}p=-\frac{x^{3}+3qx+r}{3x^{2}}\text{, }&x\neq 0\\p\in \mathrm{R}\text{, }&x=0\text{ and }r=0\end{matrix}\right,
Rozwiąż względem q
\left\{\begin{matrix}q=-px-\frac{x^{2}}{3}-\frac{r}{3x}\text{, }&x\neq 0\\q\in \mathrm{R}\text{, }&x=0\text{ and }r=0\end{matrix}\right,
Udostępnij
Skopiowano do schowka
3px^{2}+3qx+r=-x^{3}
Odejmij x^{3} od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
3px^{2}+r=-x^{3}-3qx
Odejmij 3qx od obu stron.
3px^{2}=-x^{3}-3qx-r
Odejmij r od obu stron.
3x^{2}p=-x^{3}-3qx-r
Równanie jest w postaci standardowej.
\frac{3x^{2}p}{3x^{2}}=\frac{-x^{3}-3qx-r}{3x^{2}}
Podziel obie strony przez 3x^{2}.
p=\frac{-x^{3}-3qx-r}{3x^{2}}
Dzielenie przez 3x^{2} cofa mnożenie przez 3x^{2}.
p=-\frac{qx+\frac{r}{3}}{x^{2}}-\frac{x}{3}
Podziel -x^{3}-3qx-r przez 3x^{2}.
3px^{2}+3qx+r=-x^{3}
Odejmij x^{3} od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
3qx+r=-x^{3}-3px^{2}
Odejmij 3px^{2} od obu stron.
3qx=-x^{3}-3px^{2}-r
Odejmij r od obu stron.
3xq=-x^{3}-3px^{2}-r
Równanie jest w postaci standardowej.
\frac{3xq}{3x}=\frac{-x^{3}-3px^{2}-r}{3x}
Podziel obie strony przez 3x.
q=\frac{-x^{3}-3px^{2}-r}{3x}
Dzielenie przez 3x cofa mnożenie przez 3x.
q=-px-\frac{x^{2}}{3}-\frac{r}{3x}
Podziel -x^{3}-3px^{2}-r przez 3x.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}