Rozwiąż względem C_5
\left\{\begin{matrix}\\C_{5}=\frac{P_{3}}{6}\text{, }&\text{unconditionally}\\C_{5}\in \mathrm{R}\text{, }&n=0\end{matrix}\right,
Rozwiąż względem P_3
\left\{\begin{matrix}\\P_{3}=6C_{5}\text{, }&\text{unconditionally}\\P_{3}\in \mathrm{R}\text{, }&n=0\end{matrix}\right,
Udostępnij
Skopiowano do schowka
6nC_{5}=nP_{3}
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
6nC_{5}=P_{3}n
Równanie jest w postaci standardowej.
\frac{6nC_{5}}{6n}=\frac{P_{3}n}{6n}
Podziel obie strony przez 6n.
C_{5}=\frac{P_{3}n}{6n}
Dzielenie przez 6n cofa mnożenie przez 6n.
C_{5}=\frac{P_{3}}{6}
Podziel nP_{3} przez 6n.
nP_{3}=6C_{5}n
Równanie jest w postaci standardowej.
\frac{nP_{3}}{n}=\frac{6C_{5}n}{n}
Podziel obie strony przez n.
P_{3}=\frac{6C_{5}n}{n}
Dzielenie przez n cofa mnożenie przez n.
P_{3}=6C_{5}
Podziel 6nC_{5} przez n.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}