Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

16\left(5t-t^{2}\right)
Wyłącz przed nawias 16.
t\left(5-t\right)
Rozważ 5t-t^{2}. Wyłącz przed nawias t.
16t\left(-t+5\right)
Przepisz całe wyrażenie rozłożone na czynniki.
-16t^{2}+80t=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
t=\frac{-80±\sqrt{80^{2}}}{2\left(-16\right)}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
t=\frac{-80±80}{2\left(-16\right)}
Oblicz pierwiastek kwadratowy wartości 80^{2}.
t=\frac{-80±80}{-32}
Pomnóż 2 przez -16.
t=\frac{0}{-32}
Teraz rozwiąż równanie t=\frac{-80±80}{-32} dla operatora ± będącego plusem. Dodaj -80 do 80.
t=0
Podziel 0 przez -32.
t=-\frac{160}{-32}
Teraz rozwiąż równanie t=\frac{-80±80}{-32} dla operatora ± będącego minusem. Odejmij 80 od -80.
t=5
Podziel -160 przez -32.
-16t^{2}+80t=-16t\left(t-5\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 0 za x_{1}, a wartość 5 za x_{2}.