Przejdź do głównej zawartości
Rozwiąż względem M
Tick mark Image
Rozwiąż względem a (complex solution)
Tick mark Image
Rozwiąż względem a
Tick mark Image

Podobne zadania z wyszukiwania w sieci web

Udostępnij

M=\left(-b\right)^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Użyj dwumianu Newtona \left(p+q\right)^{2}=p^{2}+2pq+q^{2}, aby rozwinąć równanie \left(-b+\frac{1}{2}a\right)^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-b\left(a-3\right)\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Podnieś -b do potęgi 2, aby uzyskać b^{2}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-\left(ba-3b\right)\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Użyj właściwości rozdzielności, aby pomnożyć b przez a-3.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(b-ba+3b\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Aby znaleźć wartość przeciwną do ba-3b, znajdź wartość przeciwną każdego czynnika.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-\left(4b-ba\right)-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Połącz b i 3b, aby uzyskać 4b.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0\times 75a^{3}b}{ab}
Aby znaleźć wartość przeciwną do 4b-ba, znajdź wartość przeciwną każdego czynnika.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0a^{3}b}{ab}
Pomnóż 0 przez 75, aby uzyskać 0.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}-0}{ab}
Wynikiem mnożenia dowolnej wartości przez zero jest zero.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-\frac{ab^{3}}{ab}
Rozłóż na czynniki wyrażenia, dla których jeszcze tego nie zrobiono, w równaniu \frac{ab^{3}-0}{ab}.
M=b^{2}+\left(-b\right)a+\frac{1}{4}a^{2}-4b+ba-b^{2}
Skróć wartość ab w liczniku i mianowniku.
M=b^{2}+\frac{1}{4}a^{2}-4b-b^{2}
Połącz -ba i ba, aby uzyskać 0.
M=\frac{1}{4}a^{2}-4b
Połącz b^{2} i -b^{2}, aby uzyskać 0.