Rozwiąż względem x
x=\frac{9}{25}=0,36
Wykres
Udostępnij
Skopiowano do schowka
9-10x=15x
Połącz 7x i 8x, aby uzyskać 15x.
9-10x-15x=0
Odejmij 15x od obu stron.
9-25x=0
Połącz -10x i -15x, aby uzyskać -25x.
-25x=-9
Odejmij 9 od obu stron. Wynikiem odjęcia dowolnej wartości od zera jest negacja tej wartości.
x=\frac{-9}{-25}
Podziel obie strony przez -25.
x=\frac{9}{25}
Ułamek \frac{-9}{-25} można uprościć do postaci \frac{9}{25} przez usunięcie znaku minus z licznika i mianownika.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}