6 u = 3 x ^ { 2 } d x
Rozwiąż względem d (complex solution)
\left\{\begin{matrix}d=\frac{2u}{x^{3}}\text{, }&x\neq 0\\d\in \mathrm{C}\text{, }&u=0\text{ and }x=0\end{matrix}\right,
Rozwiąż względem d
\left\{\begin{matrix}d=\frac{2u}{x^{3}}\text{, }&x\neq 0\\d\in \mathrm{R}\text{, }&u=0\text{ and }x=0\end{matrix}\right,
Rozwiąż względem u
u=\frac{dx^{3}}{2}
Wykres
Udostępnij
Skopiowano do schowka
6u=3x^{3}d
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
3x^{3}d=6u
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\frac{3x^{3}d}{3x^{3}}=\frac{6u}{3x^{3}}
Podziel obie strony przez 3x^{3}.
d=\frac{6u}{3x^{3}}
Dzielenie przez 3x^{3} cofa mnożenie przez 3x^{3}.
d=\frac{2u}{x^{3}}
Podziel 6u przez 3x^{3}.
6u=3x^{3}d
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
3x^{3}d=6u
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
\frac{3x^{3}d}{3x^{3}}=\frac{6u}{3x^{3}}
Podziel obie strony przez 3x^{3}.
d=\frac{6u}{3x^{3}}
Dzielenie przez 3x^{3} cofa mnożenie przez 3x^{3}.
d=\frac{2u}{x^{3}}
Podziel 6u przez 3x^{3}.
6u=3x^{3}d
Aby pomnożyć potęgi o jednakowej podstawie, dodaj ich wykładniki. Dodaj 2 i 1, aby uzyskać 3.
6u=3dx^{3}
Równanie jest w postaci standardowej.
\frac{6u}{6}=\frac{3dx^{3}}{6}
Podziel obie strony przez 6.
u=\frac{3dx^{3}}{6}
Dzielenie przez 6 cofa mnożenie przez 6.
u=\frac{dx^{3}}{2}
Podziel 3x^{3}d przez 6.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}