Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=-12 ab=4\times 9=36
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako 4x^{2}+ax+bx+9. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,-36 -2,-18 -3,-12 -4,-9 -6,-6
Ponieważ ab ma wartość dodatnią, a i b mają ten sam znak. Ponieważ a+b jest wartością ujemną, a i b są ujemne. Lista wszystkich takich par liczb całkowitych, które dają iloczyn 36.
-1-36=-37 -2-18=-20 -3-12=-15 -4-9=-13 -6-6=-12
Oblicz sumę dla każdej pary.
a=-6 b=-6
Rozwiązanie to para, która daje sumę -12.
\left(4x^{2}-6x\right)+\left(-6x+9\right)
Przepisz 4x^{2}-12x+9 jako \left(4x^{2}-6x\right)+\left(-6x+9\right).
2x\left(2x-3\right)-3\left(2x-3\right)
2x w pierwszej i -3 w drugiej grupie.
\left(2x-3\right)\left(2x-3\right)
Wyłącz przed nawias wspólny czynnik 2x-3, używając właściwości rozdzielności.
\left(2x-3\right)^{2}
Przepisz jako kwadrat dwumianu.
factor(4x^{2}-12x+9)
Ten trójmian ma postać kwadratu trójmianu, być może pomnożonego przez wspólny czynnik. Kwadraty trójmianów można faktoryzować, znajdując pierwiastki kwadratowe początkowych i końcowych czynników.
gcf(4,-12,9)=1
Znajdź największy wspólny dzielnik współczynników.
\sqrt{4x^{2}}=2x
Znajdź pierwiastek kwadratowy początkowego czynnika 4x^{2}.
\sqrt{9}=3
Znajdź pierwiastek kwadratowy końcowego czynnika 9.
\left(2x-3\right)^{2}
Kwadrat trójmianu to kwadrat dwumianu, który jest sumą lub różnicą pierwiastków kwadratowych początkowego i końcowego czynnika, ze znakiem określonym przez znak środkowego czynnika kwadratu trójmianu.
4x^{2}-12x+9=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 4\times 9}}{2\times 4}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 4\times 9}}{2\times 4}
Podnieś do kwadratu -12.
x=\frac{-\left(-12\right)±\sqrt{144-16\times 9}}{2\times 4}
Pomnóż -4 przez 4.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 4}
Pomnóż -16 przez 9.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 4}
Dodaj 144 do -144.
x=\frac{-\left(-12\right)±0}{2\times 4}
Oblicz pierwiastek kwadratowy wartości 0.
x=\frac{12±0}{2\times 4}
Liczba przeciwna do -12 to 12.
x=\frac{12±0}{8}
Pomnóż 2 przez 4.
4x^{2}-12x+9=4\left(x-\frac{3}{2}\right)\left(x-\frac{3}{2}\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość \frac{3}{2} za x_{1}, a wartość \frac{3}{2} za x_{2}.
4x^{2}-12x+9=4\times \frac{2x-3}{2}\left(x-\frac{3}{2}\right)
Odejmij x od \frac{3}{2}, znajdując wspólny mianownik i odejmując liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
4x^{2}-12x+9=4\times \frac{2x-3}{2}\times \frac{2x-3}{2}
Odejmij x od \frac{3}{2}, znajdując wspólny mianownik i odejmując liczniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
4x^{2}-12x+9=4\times \frac{\left(2x-3\right)\left(2x-3\right)}{2\times 2}
Pomnóż \frac{2x-3}{2} przez \frac{2x-3}{2}, mnożąc oba liczniki i oba mianowniki. Następnie zredukuj ułamek do najmniejszych czynników, jeśli to możliwe.
4x^{2}-12x+9=4\times \frac{\left(2x-3\right)\left(2x-3\right)}{4}
Pomnóż 2 przez 2.
4x^{2}-12x+9=\left(2x-3\right)\left(2x-3\right)
Skróć największy wspólny dzielnik 4 w 4 i 4.