Przejdź do głównej zawartości
Oblicz
Tick mark Image
Rozłóż na czynniki
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

2x^{3}+3x^{2}-6x-2x+3
Podziel 4 przez 2, aby uzyskać 2.
2x^{3}+3x^{2}-8x+3
Połącz -6x i -2x, aby uzyskać -8x.
2x^{3}+3x^{2}-8x+3
Pomnóż i połącz podobne czynniki.
\left(2x-1\right)\left(x^{2}+2x-3\right)
Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego 3, a q jest dzielnikiem współczynnika wiodącego 2. Jeden z tych pierwiastków wynosi \frac{1}{2}. Rozłóż wielomian na czynniki, dzieląc go przez 2x-1.
a+b=2 ab=1\left(-3\right)=-3
Rozważ x^{2}+2x-3. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx-3. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-1 b=3
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Jedyna taka para to rozwiązanie systemowe.
\left(x^{2}-x\right)+\left(3x-3\right)
Przepisz x^{2}+2x-3 jako \left(x^{2}-x\right)+\left(3x-3\right).
x\left(x-1\right)+3\left(x-1\right)
x w pierwszej i 3 w drugiej grupie.
\left(x-1\right)\left(x+3\right)
Wyłącz przed nawias wspólny czynnik x-1, używając właściwości rozdzielności.
\left(x-1\right)\left(2x-1\right)\left(x+3\right)
Przepisz całe wyrażenie rozłożone na czynniki.