Rozłóż na czynniki
2\left(t-2\right)\left(t+1\right)\left(t+3\right)t^{2}
Oblicz
2\left(t-2\right)\left(t+1\right)\left(t+3\right)t^{2}
Quiz
Polynomial
5 działań(-nia) podobnych(-ne) do:
2 t ^ { 5 } + 4 t ^ { 4 } - 10 t ^ { 3 } - 12 t ^ { 2 }
Udostępnij
Skopiowano do schowka
2\left(t^{5}+2t^{4}-5t^{3}-6t^{2}\right)
Wyłącz przed nawias 2.
t^{2}\left(t^{3}+2t^{2}-5t-6\right)
Rozważ t^{5}+2t^{4}-5t^{3}-6t^{2}. Wyłącz przed nawias t^{2}.
\left(t+3\right)\left(t^{2}-t-2\right)
Rozważ t^{3}+2t^{2}-5t-6. Według twierdzenia o pierwiastkach wymiernych wszystkie wymierne pierwiastki wielomianu można przedstawić w postaci \frac{p}{q}, gdzie p jest dzielnikiem czynnika stałego -6, a q jest dzielnikiem współczynnika wiodącego 1. Jeden z tych pierwiastków wynosi -3. Rozłóż wielomian na czynniki, dzieląc go przez t+3.
a+b=-1 ab=1\left(-2\right)=-2
Rozważ t^{2}-t-2. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako t^{2}+at+bt-2. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
a=-2 b=1
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest ujemne, liczba ujemna ma większą wartość bezwzględną niż dodatnia. Jedyna taka para to rozwiązanie systemowe.
\left(t^{2}-2t\right)+\left(t-2\right)
Przepisz t^{2}-t-2 jako \left(t^{2}-2t\right)+\left(t-2\right).
t\left(t-2\right)+t-2
Wyłącz przed nawias t w t^{2}-2t.
\left(t-2\right)\left(t+1\right)
Wyłącz przed nawias wspólny czynnik t-2, używając właściwości rozdzielności.
2t^{2}\left(t+3\right)\left(t-2\right)\left(t+1\right)
Przepisz całe wyrażenie rozłożone na czynniki.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}