Przejdź do głównej zawartości
Rozwiąż względem x
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

\frac{-8}{-2}=x^{2}
Podziel obie strony przez -2.
4=x^{2}
Podziel -8 przez -2, aby uzyskać 4.
x^{2}=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
x^{2}-4=0
Odejmij 4 od obu stron.
\left(x-2\right)\left(x+2\right)=0
Rozważ x^{2}-4. Przepisz x^{2}-4 jako x^{2}-2^{2}. Różnica kwadratów może być współczynnikina przy użyciu reguły: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=2 x=-2
Aby znaleźć rozwiązania równań, rozwiąż: x-2=0 i x+2=0.
\frac{-8}{-2}=x^{2}
Podziel obie strony przez -2.
4=x^{2}
Podziel -8 przez -2, aby uzyskać 4.
x^{2}=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
x=2 x=-2
Oblicz pierwiastek kwadratowy obu stron równania.
\frac{-8}{-2}=x^{2}
Podziel obie strony przez -2.
4=x^{2}
Podziel -8 przez -2, aby uzyskać 4.
x^{2}=4
Zamień strony, aby wszystkie czynniki zmienne występowały po lewej stronie.
x^{2}-4=0
Odejmij 4 od obu stron.
x=\frac{0±\sqrt{0^{2}-4\left(-4\right)}}{2}
To równanie ma postać standardową: ax^{2}+bx+c=0. Podstaw 1 do a, 0 do b i -4 do c w formule kwadratowej \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-4\right)}}{2}
Podnieś do kwadratu 0.
x=\frac{0±\sqrt{16}}{2}
Pomnóż -4 przez -4.
x=\frac{0±4}{2}
Oblicz pierwiastek kwadratowy wartości 16.
x=2
Teraz rozwiąż równanie x=\frac{0±4}{2} dla operatora ± będącego plusem. Podziel 4 przez 2.
x=-2
Teraz rozwiąż równanie x=\frac{0±4}{2} dla operatora ± będącego minusem. Podziel -4 przez 2.
x=2 x=-2
Równanie jest teraz rozwiązane.