Rozłóż na czynniki
\frac{\left(-4x-3\right)\left(4x-9\right)}{64}
Oblicz
-\frac{x^{2}}{4}+\frac{3x}{8}+\frac{27}{64}
Wykres
Udostępnij
Skopiowano do schowka
\frac{-16x^{2}+24x+27}{64}
Wyłącz przed nawias \frac{1}{64}.
a+b=24 ab=-16\times 27=-432
Rozważ -16x^{2}+24x+27. Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako -16x^{2}+ax+bx+27. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,432 -2,216 -3,144 -4,108 -6,72 -8,54 -9,48 -12,36 -16,27 -18,24
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -432.
-1+432=431 -2+216=214 -3+144=141 -4+108=104 -6+72=66 -8+54=46 -9+48=39 -12+36=24 -16+27=11 -18+24=6
Oblicz sumę dla każdej pary.
a=36 b=-12
Rozwiązanie to para, która daje sumę 24.
\left(-16x^{2}+36x\right)+\left(-12x+27\right)
Przepisz -16x^{2}+24x+27 jako \left(-16x^{2}+36x\right)+\left(-12x+27\right).
-4x\left(4x-9\right)-3\left(4x-9\right)
-4x w pierwszej i -3 w drugiej grupie.
\left(4x-9\right)\left(-4x-3\right)
Wyłącz przed nawias wspólny czynnik 4x-9, używając właściwości rozdzielności.
\frac{\left(4x-9\right)\left(-4x-3\right)}{64}
Przepisz całe wyrażenie rozłożone na czynniki.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}