Oblicz
\left(a-1\right)^{2}
Rozwiń
a^{2}-2a+1
Udostępnij
Skopiowano do schowka
a^{2}-1^{2}-2\left(a-1\right)
Rozważ \left(a+1\right)\left(a-1\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-1-2\left(a-1\right)
Podnieś 1 do potęgi 2, aby uzyskać 1.
a^{2}-1-2a+2
Użyj właściwości rozdzielności, aby pomnożyć -2 przez a-1.
a^{2}+1-2a
Dodaj -1 i 2, aby uzyskać 1.
a^{2}-1^{2}-2\left(a-1\right)
Rozważ \left(a+1\right)\left(a-1\right). Mnożenie można przekształcić w różnicę kwadratów, stosując regułę: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
a^{2}-1-2\left(a-1\right)
Podnieś 1 do potęgi 2, aby uzyskać 1.
a^{2}-1-2a+2
Użyj właściwości rozdzielności, aby pomnożyć -2 przez a-1.
a^{2}+1-2a
Dodaj -1 i 2, aby uzyskać 1.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}