Oblicz
9a^{3}-12a^{2}+6a-28
Rozwiń
9a^{3}-12a^{2}+6a-28
Udostępnij
Skopiowano do schowka
8a^{3}-12a^{2}+6a-1-27+a^{3}
Użyj dwumianu Newtona \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}, aby rozwinąć równanie \left(2a-1\right)^{3}.
8a^{3}-12a^{2}+6a-28+a^{3}
Odejmij 27 od -1, aby uzyskać -28.
9a^{3}-12a^{2}+6a-28
Połącz 8a^{3} i a^{3}, aby uzyskać 9a^{3}.
8a^{3}-12a^{2}+6a-1-27+a^{3}
Użyj dwumianu Newtona \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}, aby rozwinąć równanie \left(2a-1\right)^{3}.
8a^{3}-12a^{2}+6a-28+a^{3}
Odejmij 27 od -1, aby uzyskać -28.
9a^{3}-12a^{2}+6a-28
Połącz 8a^{3} i a^{3}, aby uzyskać 9a^{3}.
Przykłady
Równanie kwadratowe
{ x } ^ { 2 } - 4 x - 5 = 0
Trygonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Równanie liniowe
y = 3x + 4
Arytmetyka
699 * 533
Macierz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Równania równoważne
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Różniczkowanie
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Całkowanie
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Granice
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}