Przejdź do głównej zawartości
Rozłóż na czynniki
Tick mark Image
Oblicz
Tick mark Image
Wykres

Podobne zadania z wyszukiwania w sieci web

Udostępnij

a+b=1 ab=1\left(-12\right)=-12
Umożliwia Rozdzielnik wyrażenia przez grupowanie. Najpierw należy zapisać wyrażenie jako x^{2}+ax+bx-12. Aby znaleźć a i b, skonfiguruj system do rozwiązania.
-1,12 -2,6 -3,4
Ponieważ ab jest wartością ujemną, a i b mają przeciwne znaki. Ponieważ a+b jest dodatnie, liczba dodatnia ma większą wartość bezwzględną niż ujemna. Lista wszystkich takich par liczb całkowitych, które dają iloczyn -12.
-1+12=11 -2+6=4 -3+4=1
Oblicz sumę dla każdej pary.
a=-3 b=4
Rozwiązanie to para, która daje sumę 1.
\left(x^{2}-3x\right)+\left(4x-12\right)
Przepisz x^{2}+x-12 jako \left(x^{2}-3x\right)+\left(4x-12\right).
x\left(x-3\right)+4\left(x-3\right)
x w pierwszej i 4 w drugiej grupie.
\left(x-3\right)\left(x+4\right)
Wyłącz przed nawias wspólny czynnik x-3, używając właściwości rozdzielności.
x^{2}+x-12=0
Wielomian kwadratowy można rozkładać na czynniki przy użyciu przekształcenia ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), gdzie x_{1} i x_{2} to rozwiązania równania kwadratowego ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\left(-12\right)}}{2}
Wszystkie równania w postaci ax^{2}+bx+c=0 można rozwiązywać za pomocą formuły kwadratowej: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Formuła kwadratowa daje dwa rozwiązania — jedno, w którym operator ± jest dodawaniem, i drugie, w którym jest on odejmowaniem.
x=\frac{-1±\sqrt{1-4\left(-12\right)}}{2}
Podnieś do kwadratu 1.
x=\frac{-1±\sqrt{1+48}}{2}
Pomnóż -4 przez -12.
x=\frac{-1±\sqrt{49}}{2}
Dodaj 1 do 48.
x=\frac{-1±7}{2}
Oblicz pierwiastek kwadratowy wartości 49.
x=\frac{6}{2}
Teraz rozwiąż równanie x=\frac{-1±7}{2} dla operatora ± będącego plusem. Dodaj -1 do 7.
x=3
Podziel 6 przez 2.
x=-\frac{8}{2}
Teraz rozwiąż równanie x=\frac{-1±7}{2} dla operatora ± będącego minusem. Odejmij 7 od -1.
x=-4
Podziel -8 przez 2.
x^{2}+x-12=\left(x-3\right)\left(x-\left(-4\right)\right)
Rozłóż pierwotne wyrażenie na czynniki w następujący sposób: ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Wstaw wartość 3 za x_{1}, a wartość -4 za x_{2}.
x^{2}+x-12=\left(x-3\right)\left(x+4\right)
Uprość wszystkie wyrażenia w postaci p-\left(-q\right) do postaci p+q.